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Abstract 
 

The quest for realistic computer generated images continues.  An exciting area of 

which is real-time rendering.  Images need indirect light, soft shadows and color 

bleeding in order to exhibit realistic global illumination qualities.  Achieving real time 

frame rates requires compromise as high quality methods such as view dependent ray 

tracing may consume hours instead of the milliseconds available.  Today’s 

applications must run on today’s computers, the majority of which are still using last 

years hardware at best.  Light-mapping or precomputed light and shadow textures are 

a well known technique, used in computer and video games, to enhance the realism of 

statically lit scenes at very low run-time cost. 

This paper presents a new lighting technique capable of rendering diffuse 

global illumination for static scenes of high complexity built from arbitrary polygonal 

meshes.  It draws from existing methods such as ray tracing, photon mapping and 

radiosity to produce worthwhile results with a controllable precomputation cost.  The 

precomputation phase and the final real-time render phase are designed to run on 

systems with limited memory, and do not require any specific CPU and GPU features 

beyond floating point calculation and texture mapping. 
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1 Introduction 
 

This paper presents a new lighting technique that draws on methods and tools used in 

ray tracing, photon mapping (Jensen 1996) and radiosity (Goral et al. 1984).  The 

lighting result that is produced approximates diffuse global illumination.  The 

technique works by using a photon map to locate and sample concentrations of light 

energy that have collected in the scene.  These samples are converted into a set of 

virtual lights that are rendered along with direct lights, in a view independent manner, 

via ray tracing, onto texture maps covering the scene surfaces.  This technique is 

largely independent of scene complexity and is highly scalable in that the sampling 

quality and time are directly related to configuration settings that may be dramatically 

altered while allowing the result to remain representative of the lighting solution.  

Implementation details and related issues are also presented.  Appendix A shows 

sample output from this technique. 

 

This technique has some parallels with Instant Radiosity (Keller 1997) in that indirect 

light may be accurately simulated by creating more direct light sources.  It also has 

ties to traditional radiosity that implies that every surface acts a secondary light source 

during a simulation phase in which energy is distributed throughout the scene. 

 

No special pre-processing is required for the geometry.  The implementation works on 

triangle soups, however structures such as BSP (Binary Space Partition) and Octrees 

are essential for accelerating ray tracing and ensuring efficient operation of the 

process. The scene does not need to be tessellated into a grid as many Radiosity 

techniques require.  If the surfaces are processed in turn, very little memory is 

required for the whole process, as buffers may be shared and the results stored along 

the way.  Only the scene geometry and various acceleration structures need be stored.  

The photon map and surface sample points need not persist throughout the process. 

 

2 How does it work? 
 

In this lighting solution, direct lights represent the first bounce of light reflecting off a 

surface, and the indirect lights represent the final bounce.  The photon map becomes a 

tool to statistically simulate and sample energy distributed in a scene.  The balanced 

kd-tree is a tool; to not only accelerate manipulation of the photon map, but sample 

energy concentrations in the scene in an efficient and well-distributed manner. 

 

Once a set of direct and indirect lights are created from the scene description and the 

indirect light sampling process, the lights are applied by illuminating the texels of the 

lightmaps covering the scene surfaces.  Various acceleration techniques are utilized to 

reduce the number of light samples and speed the ray testing method used to 

determine visibility. 

 

These are the basic steps of the lighting process: 

1) Generate global photon map.  Not too many photons are required, a few 

hundred thousand to a few million should be adequate for NumPhotons. 
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2) Decide on the NumIndirectLights number of indirect lights. Several hundred, 

to a few thousand will produce a good result.  The number of photon samples 

will be approximately NumSamples = NumPhotons / NumIndirectLights. 

3) Use a balanced kd-tree (3d tree) to store the photons.  Traverse this tree, 

sampling the first NumIndirectLights photons. 

4) Use the photon position and surface normal to sample the nearest NumSamples 

photons that have similar surface normals. 

5) Add all the photon energy for each of these indirect lights together, and create 

a new direct light. 

6) Process these indirect lights together with the original direct lights, but treat 

them as (radiosity style) surface emitters.  Bias the source area to compensate 

for light source bright spots, as these surface lights are approximated by point 

sources. 

7) Process the direct lights using multi sampling so they have an area effect with 

soft shadow edges. Tens to a few hundred samples will look nice. 

 

3 Why does it work? 
 

This lighting technique borrows concepts and methods from several existing 

techniques.  This section describes the details of how particular methods have been 

used or modified to help this technique produce the desired results. 

 

The photon map construction is fairly standard, but the Russian roulette (Arvo James 

et al. 1990) rules are modified slightly.  The photon map stores energy to emit the 

final bounce, not visualize on the surface before being seen by the eye.  Because of 

this, stored diffuse photons must have the surface color applied otherwise they will 

reflect the incident light color instead of the reflected light color when emitted.  In 

addition, if specular light is to be approximated (and it can be in a very dodgy 

manner), the specular light samples must be stored at every bounce otherwise the 

specular effect will be effectively lost. 

 

The kd-tree is a three dimensional, axis aligned BSP tree.  When balanced, it 

partitions space in a way that is consistent with the distribution of photon locations.  

Note that using the kd-tree in this way has been used by Per Christensen (Christensen 

2001) to accelerate final gathering in photon map enhanced ray tracers by pre-

computing irradiance.  The sample positions in the kd-tree are safe since a photon is 

stored at a surface there.  Light energy is conserved by accumulating energy from 

emitted photons and distributing it to virtual lights for emittance.  Refer to figure 1 to 

see how one thousand indirect lights were created from one million photons in a 

photon map.  Notice there is a higher density of indirect light sources in areas where 

light is being reflected. 
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Fig. 1: Indirect lights sampled from the top levels of the kd-tree. This image shows one thousand lights 

from a one million-photon map.  A higher density of (indirect) light sources is visible in areas where 

light is being reflected.  The three almost solid clusters are actually inside lamp covers.  The other two 

lights were not covered.  Although hard to tell from this angle, many of the new light sources in darker 

areas are actually located on the ceiling. 

 

When these virtual indirect lights are created, like traditional direct lights, they emit 

from an infinitely small point.  This can lead to bright spot artifacts at surfaces very 

close to the light source.  It may be thought that a solution would be to spread the 

light out on a surface, or across multiple samples, but this would defeat much of the 

benefit obtained by this technique.  Besides, an alarming number of indirect lights 

(perhaps a thousand or so) are already used to render this light, so the number of 

lights should be minimized.  It turns out that by biasing the source emitter area in the 

lighting equation, the bright spot artifact that would otherwise appear can be 

effectively eliminated.  Refer to figure 2 for original and corrected results.  Further 

work needs to be done to explain exactly what the optimal bias number is, but simple 

experimentation produces a good value very quickly.  If the bias is too small, the 

bright spots are evident, if it is too large, the light result is darkened, but at the 

moment where the spot artifacts disappear and the light begins to noticeably darken, 

the optimal bias is found.  This bias factor is consistent and appears to relate only to 

the size (and shape) of the energy sample, but nothing else.  A value of 10 was found 

to be suitable for lights sampled with a sphere and 30 to be suitable if sampled with a 

cube.  It might appear that the difference could be pi and that 10pi or such would be 

more precise, but that is not correct.  It must also be noted that the sphere and cube 

samples are only approximations.  Smaller and more numerous samples approach an 

accurate result.  Although the sample shape is a sphere or cube, the photons lie on the 

scene surfaces such that a spherical sample flattens to a disc and cube sample to a 

polygon.  The size of the sample volume and the scene geometry contribute to the 

accuracy (or lack of) in this phase. 
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Fig. 2: Light source is above the white table.  Left: Bright spot artifacts caused by 

point light sources on nearby surfaces.  Right: Bright spot artifacts removed by 

biasing the source area in the lighting equation. 

 

4 Limitations 
 

Several limitations exist relating to this lighting technique.  There are performance 

and quality considerations, and the lighting result is not a complete lighting solution, 

as it does not simulate all the ways light interacts with the scene and viewer. 

 

The inner loop of this lighting technique requires an occlusion test, and that is 

traditionally the slowest part of a ray tracer.  Even a hardware implementation would 

require extra rendering and reads from a stencil buffer or shadow buffer. 

 

Better results are produced using higher resolution output texels, and more indirect 

lights.  This means the process may need to run for minutes to hours to produce 

results of a desirable quality.  A standard ray tracer should produce higher quality 

view dependant results much faster. 

 

Caustics and Specular light effects are not produced by this technique, or at least not 

visualized correctly.  Note that the photon map could produce caustics by simulating 

photons interacting with reflective surfaces and participating media, though the results 

would not be good since very few photons are used and the implementation does not 

visualize the photon map directly.  This is actually a serious drawback in scenes with 

lots of reflective surfaces.  For example, if a light was close to a mirror, the reflected 

light is not visible.  It is however distributed correctly for other diffuse representation.  

A dodgy compromise has been implemented that stores photons on reflective 

surfaces, so they can be emitted from that surface and create some light even though 

the light is emitted diffusely, thus losing the directional focus that characterizes 

specular light.  Note that this technique was never intended to simulate specular light.  

The specular light is best rendered in real time since it is largely view dependant.  The 

specular style light that is missed is caustics, that is, highly directional indirect light 

seen on diffuse surfaces.  The earlier example, of a light, close to a mirror reflecting a 

bright spot on a nearby surface, is familiar in the architectural scenes tested.  Caustics 

are commonly noticed as the striking light patterns, seen dancing near swimming 

pools and water, caused by reflection and refraction. 
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A low quality lighting result may show artifacts relating to the number and separation 

of lights in the scene.  The result looks a bit like an object lit by football stadium 

lights, with a small number of distinct and separated shadows rather than one soft 

shadow.  Figure 3 shows an example of this. 

 

 
Fig 3:  Too few indirect lights cause light and shadow banding. 

 

Appendix A describes early attempts that led to the development of the lighting 

technique presented in this paper. 

 

5 The Entire Process 
 

This section overviews the entire process from importing the scene to preparing 

output.  Several significant parts of the process are expanded as pseudo code.  Future 

sections will describe particular parts of the processes in depth. 

 

Import geometry and lights 

Scene Geometry and lights are added from an external file or directly in code, 

via an interface class.  Mesh consolidation is performed with shared or near-

identical polygon vertices are merged and degenerate triangles are removed. 

Initialize Direct lights from input lights 

Direct lights are initialised from original light sources.  Surface lights are 

subdivided into multiple patches.  Omni lights and spot lights will be mutli-

sampled later. 

Build acceleration structures from mesh geometry 

Polygon BSP trees are constructed for each polygon mesh object. 

Transform local space geometry into global space 

World space polygon representations are constructed for every surface in the 

scene. 

Calculate bounding volumes for mesh objects 

Various bounds and extra information is collected or calculated for each mesh 

object. 

Create acceleration structures from mesh objects 
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Scene and/or region BSP trees are constructed to store mesh obj7ect 

references.  Visibility tables may also be calculated here. 

Create smoothing groups from mesh object polygons 

Smoothing groups are created from polygons that share edges with near-

identical positions and normals. 

Create lightmaps from smoothing groups 

Lightmap sample structures are created from sets of polygons in smoothing 

groups. 

Build Photon Map  * 

Photon map is created by simulating light reflected and absorbed within the 

scene. 

Create Indirect Lights  * 

Photon map is sampled to create more lights, where energy is reflected in the 

scene. 

Free Photon Map 

Photon map is no longer required and its resources may be released. 

Light the world  * 

All lights, Direct and so-called Indirect are sampled to light the lightmaps.  

Visibility is determined via ray testing. 

Pack lightmaps 

Related lightmap rectangles are packed together into larger texture pages. 

Finalize lightmap texture coordinates 

Polygon vertices are adjusted with final lightmap texture u,v coordinates. 

Output lightmap textures 

Lightmap texture pages are written to disk. 

Geometry is ready for export 

Data structures are ready to export or further consolidation. 

 
* Expanded description of this part of the process follows. 

 

Specific parts of the process in more detail. 

  

Build Photon Map 

 Create photon emitters from Direct Lights 

 Calculate total light power for scene 

 While photon map no full 

  For each light 

   If light probability to emit is ready 

    Emit photon 

    While photon not absorbed or lost 

     Trace photon 

  If all photons have been lost for several passes  

Exit now to prevent endless loop (scene is misconfigured) 

 For all photons in photon map 

  Adjust power by: total power / number of lights 

 

Create Indirect Lights 

 For number of desired indirect lights 

  Sample photon map 

  Create indirect light and add to direct light set 
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Light the world 

 For all lightmaps 

  Prepare shared memory 

  Calculate sample points for texels 

  For all lights 

   Find objects that potentially occlude 

   Sample single lightmap with single light: 

   For every lightmap sample point and every light sample point 

    Calculate lighting equation 

    Ray test visibility 

    Add result to lightmap sample color 

  Apply exposure correction 

  Apply multi-sample filtering 

  Fill RGB output from texel samples. 

  Release shared memory 

 

6 Parts of the process 
 

6.1 Smoothing group creation 

 

A smoothing group is a collection of polygons that appear smooth because they share 

edges, with vertices having both the same position and normal.  Smoothing groups are 

usually specified by the artist using an application to construct the scene meshes.  

Sometimes mesh exporting programs consolidate the mesh polygons and calculate 

smoothing information.  In order to maximise flexibility, the implementation 

consolidates the mesh by merging shared vertices and creates smoothing groups by 

merging shared edges.  Detecting and merging shared vertices and edges can be a 

time consuming operation if implemented in a brute force manner.  Once polygon and 

vertex counts reach the tens of thousands, algorithms that are more efficient must be 

employed. 

 

This implementation uses a dynamic kd-tree to accelerate neighbor queries to detect 

shared vertices and edges.  As edges are described as indices into vertex pools, the 

edges are two dimensional integer pairs that are easily inserted and queried via the kd-

tree.  Refer to Appendix B for a description of balanced and dynamic kd-trees.  Other 

possible structures such as hash tables, modified for multi dimensional range queries, 

and r-trees, may be suitable for similar data manipulation.  Such other structures 

however, are often complex to implement and have significant per-node memory 

overhead.  Performing mesh consolidation, smoothing group and lightmap creation 

allows the implementation to easily handle polygon soups from any source, with 

excellent performance. 
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6.2 Lightmap structure creation 

 

A lightmap in this implementation is a rectangle of samples that will eventually be 

output as a rectangle of texture.  The lightmap structure stores a list of the polygons 

that form a surface as part of the larger scene.  A parameterization is also stored to 

accommodate conversion between texture space and world space. 

 

Currently, polygons are grouped to form a lightmap as follows:  A seed polygon is 

selected from the remaining polygons in a smoothing group belonging to a mesh 

object.  The polygon group is grown outward from the seed polygon as long as 

various criteria are met.  The potential polygons are already being selected from the 

same smooth group, so for a simple world-axis oriented planar projection, the face 

normals are compared for similarity.  The signed dominant axis of the face normal 

determines whether the polygon can be added to the lightmap’s polygon group or not.  

Other polygon attributes such as lightmap texture resolution must also be identical, to 

be a part of the polygon group.  As the lightmap represents a single texture, uniquely 

covering the lightmap’s polygons, care must be taken to prevent polygons from 

overlapping.  A polygon strip that looks like a ribbon with ends crossed, or like the 

twisted surface of ice-cream from a ice-cream machine, will contain overlapping 

polygons that would otherwise be grouped together.  Overlapping polygons are 

rejected by a two dimensional separating axis test, and will form part of some other 

lightmap. 

 

Lightmaps are bounded by a world-axis aligned grid, rounded outward to the nearest 

grid position, plus one or more border grid units.  These extra border units relate to 

the extra texels, added to help with texture seams, filtering and mip mapping issues 

discussed elsewhere.  Figure 4 shows an example lightmap diagram. 

 

 
Fig. 4: Diagram of a lightmap.  Wx,y,z represent world axes.  Tu,v are the texture axes.  

Note the lightmap is at least one whole grid unit larger than the contained geometry in 

each direction.  The grid represents texels in a texture.  At least one extra texel around 

the geometry is sampled for use by bilinear interpolation. 



 11 

 

Sample points representing texels or sub-texels are calculated across the face of the 

lightmap.  The sample points usual lie in the center of the texels, but may be in other 

locations for antialiasing.  Earlier implementations calculated the sample points for all 

lightmaps as a phase before lighting.  The current implementation delays sample point 

creation for each lightmap, until they are required for use in lighting.  The sample 

points are dumped as soon as they have been made use of.  Doing this greatly reduces 

memory usage as each sample point is a full float vector3 position, normal, color and 

some flags. 

 

6.3 Photon Map 

 

The photon map, as described earlier, is a tool used by this technique to simulate, 

store and sample light energy in a static scene.  Figure 5 shows photons stored in the 

photon map, rendered in the scene at their positions. 

 

 
Fig 5: Photons in a photon map. Left: The light source is positioned above floating 

table.  The table has some alpha transparent texels.  Notice how the shadow varies in 

density under the spheres. Right: Kitchen and Lounge with ceiling light and lamp 

illuminating scene. 

 

6.3.1 Photon storage 

As hundreds of thousands to millions of photons may be stored in memory, the 

photon structure size must be minimized.  The implementation uses the compression 

methods described by Jensen, originally developed by Greg Ward.  The photon power 

or flux is stored in a 4byte RGBE, Red, Green, Blue, Exponent form.  It is 

compressed and decompressed as required.  The incident direction and/or surface 

normal of the photon are stored as two byte-size signed integers representing angles 

quantized with a resolution of less than 1.5 degrees.  The photon position remains a 

full 12 byte float vector3 because it is accessed very frequently.  The whole structure 

is about 20 bytes.  Slightly more if extra components are required, or padding is added 

for memory address alignment.  As the photon map is only used to create indirect 
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light sources, it can be constructed, used, and thrown away, so its memory usage is 

not as critical as it could otherwise be. 

 

During kd-tree balancing, photon elements are sorted in place so no extra memory is 

required.  Photons are allocated in blocks in a growing structure that behaves like an 

array. 

 

6.3.2 Photon emitting and reflecting 

It is difficult to precisely control how many photons will be emitted and stored.  If one 

was to set a exact number of photons to be emitted, some may be lost entirely due to 

gaps in the scene mesh, others may be stored multiple times due to the diffuse 

reflectance model.  The quality of the photon map and the amount of memory used is 

determined by the number of photons stored, so controlling this is important.  The 

photon map is intended to statistically represent the density of energy distributed 

throughout the scene.  Lights of different intensity need to contribute their relative 

share of photons to the photon map. 

 

The photon emitting process continues until at least n photons are stored in the photon 

map.  If a scene contained gaps or if lights were facing away from a non-enclosed 

scene, many or all of the photons may be lost.  Such a configuration must be detected 

to prevent endless looping.  Each light emitter is given a firing threshold and has an 

accumulator that increments each time the opportunity to fire passes.  In this way, 

lights are repeatedly cycled and given the occasion to fire a photon until the photon 

map is full.  The photon map will thus contain no less, and often slightly more 

photons than requested. 

 

Photons are emitted from light sources in proportion to their contribution of energy 

relative to the combined energy of all lights.  Photons are emitted in a quasi-random 

manner.  Each light type has an emittance function appropriate for its form.  Point, 

Spot and Surface lights are supported.  Point lights are actually spheres and photons 

are spawned from random points on the surface of the sphere.  Spot lights use a 

random cosine distribution, oriented in the light’s direction, and scaled by the lights 

outer-arc. Note that when the direct light is calculated for a spot light, it uses inner 

and outer arc values for greater control, similar to the OpenGL and DirectX APIs and 

familiar to real-time 3D artists.  Surface lights spawn photons from random locations 

across a polygon surface that has been tessellated into triangles, and weighted 

according to the relative area of the triangle to the whole surface. 

 

Photons are all emitted with the same power, but as they are reflected, their power 

may vary and filtering may occur.  If a photon mapping solution were to consider 

participating media such as translucent prisms, it may be desirable to store separate 

red, green and blue photon maps.  If other aspects of a complete realistic lighting 

model were to be simulated, separate photon maps would be required to maintain 

efficiency.  A photon map just for caustics is often used in commercial renderers.  

These caustic photon maps store a large number of photons and need to be directed at 

specular surfaces and are only constructed for portions of the scene actually visible to 

the (synthetic) camera.  This is because caustic photon maps are visualized directly 

and must produce well defined output.  The global photon map used by this process is 

not visualized directly so it’s implementation and usage is relatively simple. 
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6.3.3 Photon sampling 

 

To make use of a photon map, the photons stored in it must be sampled.  A density 

estimate can be made by either sampling with a fixed size, or a fixed photon count.  

Both methods produce identical results when comparably configured.  Using a fixed 

sample size for direct photon map visualization does not usually produce as good 

results as a fixed photon count because the fixed photon count adapts its search size to 

provide a better density estimate.  Finding the nearest n photons efficiently can be 

challenging.  Most methods work by taking a smaller fixed size sample and resizing 

up if the sample contained too few photons.  Performing multiple samples in order to 

find enough photons wastes time and needs to be minimized.  When photons are 

located, they are kept in a priority queue so a farther photon may be exchanged with a 

nearer one efficiently.  This implementation uses a binary heap as a priority queue.  

Most operations on a binary heap call a Heapify function (not described here) that 

rearranges the structure to preserve the heap property. 

 

The automatic sampling method used by this implementation proves to be efficient, 

resampling in some scenes well less than 1% of the time when tested to directly 

visualize the photon map.  The initial Min sample sizes (ie. Sphere radius or box 

extents) is almost arbitrary due to the algorithms rapid estimate correction.  Min 

should be set to a small number above zero, and Max should be set to a reasonable 

limit relative to the scene size (for example, two to five meters for a real size house.) 

 

This is the basic algorithm for automatic sample sizing: 

 

Sample photons with current size estimate 

If collected photons < desired limit 

Adjust radius based on area density estimate 

(Eg. If 25% less photons were found than desired, increase the sample area by 

~25% by adjusting the search radius.) 

If radius > maxRadius 

 Accep the sample and continue 

Else 

Loop back and sample again 

Else (If collected photons = desired limit) 

Set radius to furthest photon dist + 10% or so for conservative overestimate. 

Don't loop back, but record and use the adjusted size next time. 

 

Note that the number of photons sampled will never exceed the desired limit because 

the nearest n samples are collected, and the search will terminate as soon as that limit 

is reached. 

 

The shape of the photon map sample may be a sphere or a cube.  Results from either 

are visually similar.  Performance of the cube sampler may be slightly better, and may 

produce better results.  The cube sample shape was chosen based on the logic that 

since the top levels of the kd-tree are used to create indirect lights, a cube sample 

would be more compatible and accurate with the axis aligned subdivided space of the 

kd-tree. 
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6.3.4 Kd-tree sampling optimizations 

 

The kd-tree is used to accelerate queries on the photon map as well as locate well-

distributed indirect light concentrations.  Here are some optimizations used by the kd-

tree traversal function to sample photons in the photon map: 

• Sqrt() is avoided.  The squared radius is maintained instead, and vector 

components (eg. Extents[axis]) are used where possible.  With a sphere shaped 

sample, the sign check is performed on the axis distance, as the squared radius 

is always positive. 

• Iteration is used instead of Recursion where possible.  When sub trees are 

skipped, the code sets new Start and End range within the tree and just re-

iterates instead of re-calls. 

• The code is reordered such that the test on the current node can be skipped 

entirely if the current node is known to be located too far from the test 

position. 

• Ordering the priority queue is delayed until it is full.  The caller checks if the 

queue is ordered or not.  If the queue hasn't been ordered yet, the caller makes 

a single pass through the unordered queue to find the maximum and sets this 

as the first element.  An alternative would be to call heapify once, if this had 

not occurred thus far. 

• When photons are popped off the resulting queue, they are not actually 

removed.  Doing so would cause the queue to heapify on each removal.  

Instead, the queue is treated as an array again, and elements are processed in 

that order.  The first element is still the least cost (farthest to sample location) 

as expected. 

 

6.4 Original Direct Lights 

 

The focus of this paper is on indirect diffuse light, but the direct diffuse light is 

usually a significant contributor to a final lighting solution.  Direct lights are handled 

in a fairly standard manner.  The contribution from each light is calculated per pixel 

(texture sample) and added to the lightmap.  The lights are multi sampled in order to 

achieve softer shadows and lighting.  Lights that would otherwise be point sources 

become surfaces.  Recall that ‘soft shadows are a consequence of partial visibility of 

an extended light source’ (Hasenfratz  et al. 2003).  Spot light samples start at a 

section on the surface of a sphere.  Surface lights may be used as an additional light 

type and are simulated like this: All polygons that describe the emitting surface are 

made into patches.  These patches are recursively subdivided by splitting them with 

axis aligned planes until they reach a configured size threshold.  The surface light 

patches then become smaller spot lights.  They actually use a surface-to-surface 

radiosity style lighting equation rather than that of a point or spot light. 

 

Point lights and spot lights are multi sampled by generating points on the surface of a 

sphere the size of the light.  These points may be generated uniformly, randomly, 

uniform with jittering, or with a similar method.  The larger the light sphere is, the 

more samples are required to make the shadows appear smooth.  The output texture 

resolution may also influence the lighting result, as lighting artifacts may be more 

visible on higher resolution output.  Lower resolution output has the effect of blurring 
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light samples together reducing the light sample aliasing.  A quick preview with soft 

shadows may require 25 samples per light, but for high resolution, final quality, 150 

to 300 samples may be required for smaller and larger lights respectively.  Figure 6 

shows soft shadows cast by a spot light. 

 

 
Fig. 6: A soft shadow cast from a (direct) spot light.  The light source is positioned 

above the floating table.  Notice the shadow penumbra appears wider at different 

locations, particularly further from the light source. 

 

6.5 Ray tracing 

 

When ray tracing is referred to in this paper, it is not about the traditional method of 

tracing a ray through a screen pixel to the scene objects, with shadow ray tests back to 

light sources.  Instead, it is simply referring to testing line segments for point-to-point 

visibility, or first hit results.  Although rays are frequently referred to, infinite rays are 

almost never used.  Line segments that represent limited logical rays are used instead.  

Line segments limit the test scope to the scene size, or smaller local space.  

Additionally, precomputation can accelerate some calculations involving line 

segments. 

 

Implementing ray tracing techniques in code in a brute force manner is relatively 

simple, though completely impractical.  Acceleration methods and structures are thus 

essential for feasible operation.  Such methods attempt to minimize the number of 

objects and polygons considered for testing.  Structures are used to group objects, 

divide space, or store relationships so that tests, limited to specific locations in the 

scene, may be performed efficiently. 

 

6.5.1 Potential Test Objects 

A scene is usually a collection of many objects.  These objects may be referenced by, 

or stored in high level entities such as regions, rooms or cells.  The objects in this 
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implementation are effectively polygon soups and may contain up to 65 thousand 

individual polygons each.  Although objects may be a polygon soups, connected 

surfaces and non-intersecting geometry produce efficient output with fewer artefacts. 

 

In order to reduce the number of tests performed, only the regions, objects and 

polygons potentially intersecting the test are considered.  To cull whole regions, 

various high level structures, or look up tables derived from them, may be used.  To 

reduce the number of objects tested, an axis-orthogonal, shallow BSP tree is used to 

store object references.  The object’s bounding box is used to classify the object 

within this structure.  As the scene or region size is known, a BSP is created to a fixed 

depth, simply partitioning the region into a set of equal size voxels.  Objects are 

inserted into this structure, as if dropped in the top, and fall through to be stored in the 

leaves.  A single object may be referenced multiple times within the tree.  This BSP 

could have been constructed in a number of different ways, and other structures could 

have alternatively been used.  This particular structure is simple to implement and 

provides excellent query performance.  As described later, a convex hull is 

constructed that bounds all paths between a light source and surface.  This hull is 

tested with the BSP to produce a reduced set of objects to ray-test. 

 

A single mesh object may be stored in up to two BSPs, one for opaque polygons, the 

other for transparent or translucent polygons.  The opaque set is always tested first as 

it is more efficient to do so, and if a hit occurs for an occlusion test, occlusion is 

guaranteed, even if other translucent objects would also have intersected.  

6.5.2 Polygon BSP 

The purpose of the polygon BSP is to reduce the number of line-segment versus 

polygon tests.  These tests are used to determine point to point visibility between a 

light and a receiving surface.  Approximately 50% of CPU time is spent performing 

this function. 

 

The top levels of the BSP are split by axis-orthogonal planes, dividing the mesh space 

into voxels.  A voxel is a volume element, but in this description, it is simply a three 

dimensional axis aligned box.  The remaining nodes are split by the planes of 

polygons from the mesh.  Polygons may be stored on any level below the voxel 

subdivision, not just in the leaves.  A similar BSP structure is described by Jim Arvo 

in his paper “Linear-Time Voxel Walking for Octrees”. (Arvo 1988).  Refer to figure 

7 for a visualization of the axis-orthogonal portion of the BSP tree.  This type of tree 

can be constructed quickly, and traversal proves to be faster than other related tree 

structures.  Polygon descriptions are stored in the tree.  The polygons are stored as 

triangles in the final implementation, but n-gons would be efficient for meshes mostly 

comprised of flat quads.  Polygons are stored as two-dimensional edge planes, and a 

three-dimensional face plane, for fast point in polygon and line segment testing. 
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Fig. 7: BSP generated from coffee machine model.  Only the top-level axis aligned 

(voxel style) portion of the BSP is shown.  Further down the tree, the mesh polygons 

are used to create hyperplanes. 

 

Here is the pseudo code for BSP construction 

 

Function Initialize 

Add all polygons to a single node. 

Find the axis aligned bounding box of the node. 

Call Function SplitByAxis 

 

Function SplitByAxis 

boxDelta  = boxMax - boxMin  

axisSet = boxDelta component indices sorted from large to small. 

If current tree depth < depthLimit  

AND number of polys in node > min polys in node 

For index 0 to 3 

Use the next axis index from axisSet and make a splitting  

plane and bounding boxes for each side 

Split the node polygons into two groups by testing  

with box bounds, not just the split plane 

 numSpanned = numFront + numBack - numOriginal 

 fraction = numSpanned / numOriginal 

 If fraction > fractionThreshold (30% works well) 

  Don’t accept this split and continue 

 Else 

  Accept this split and break 

If none of the 3 axes were accepted 
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Call function SplitByPolyPlane 

Create two new nodes 

Put polygon groups into the two new nodes 

Remove contents from original node 

Call function SplitByAxis 

Else 

 Call function SplitByPolyPlane 

 

Function SplitByPolyPlane 

Find best (least cost) split plane from poly set 

Split poly set using plane and reasonable size epsilon 

For each of the two potential children 

 If num polys on this side of plane > 0 

  Create child node 

  Fill node with polys 

  Call function SplitByPolyPlane 

 

The function to find the best polygon splitting plane proved to be very difficult to 

make worthwhile.  Obvious choices are to find a plane that minimizes splitting, or 

creates better balancing.  None of these choices or combinations consistently helps 

performance, though they can dramatically affect tree size or tree depth.  Creating an 

optimal BSP for traversal speed is very difficult.  Not only could early, apparently 

good split choices prove to be bad later during construction, but the cost of traversing 

the tree changes at different points.  For example, the first few levels of the tree cull 

large areas of the test space, but later levels may cost more than just testing the node 

contents.  In addition, the configuration of polygon geometry and rays may create 

inefficient situations.  For example, if a flat rectangular surface was tessellated into 

many triangles for some reason, it may be better that all the polygons be placed in one 

node, rather than divide the polygons into more nodes.  If the node is rejected early in 

the test, then many polygons are culled at once.  However, if the node was 

consistently encountered, early on, many polygons may be tested for no effect.  In the 

latter case, it would have been better to split the node contents into more nodes.  The 

fact that tree levels closer to the root are like voxels (forcing the mesh to be divided 

efficiently into chunks early on) greatly eases the responsibility for later levels to be 

optimal. 

 

Traversal of the BSP tree is fairly standard.  A better understanding of BSP traversal 

and some optimisations were learned from Havran et al. (Havran et al. 1998). A few 

optimizations are worth noting: 

• Nodes that have axis aligned planes are handled specially.  Distance to axis-

plane tests are performed without the dot product.  When the test line segment 

is split, the mid point calculation is different for axis and arbitrary planes.  

Reciprocal absolute line segment components are pre-calculated to eliminate a 

divide in that case. 

• The function calls itself recursively rather than using an explicit stack.  This 

proves to be faster on Intel based PCs but should not be considered optimal for 

all machines. 

• The traversal uses iteration if possible and only recursion when necessary.  If 

the line segment is not split and no new variables are required, the function 
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can repeat using a loop, merely swapping local values such as current node or 

test segment end points. 

• Test information is stored in a structure and passed as one parameter, 

minimizing the number of parameters pushed for each function call. 

• If the line segment is entirely on either side of the plane, it is passed in its 

entirety to the next test.  This prevents the mid point from drifting outside the 

original line segment and compromising stability. 

• Most traversal performance is gained from skipping sub trees beyond the 

range of the search, and by trimming the test line segment whenever it 

intersects a plane.  This is standard behaviour for a BSP traversal routine. 

 

Here are some other traversal optimizations that were tried, but proved inefficient: 

• Instead of passing the line segment test as two end points, and calculating the 

mid point if split, pass the line segment as Min and Max normalized times.  

This sounds like a good idea because it removes the midpoint calculation, but 

instead, there is a higher cost for non-axis aligned planes.  If the tree only held 

axis aligned planes, this may be the preferred method. 

• A large number of configurations and reordering of code were tried including:  

Unrolling, using indices instead of conditions, minimizing code at the expense 

of increased recursion, front to back traversal of the line segment, careful and 

unchecked mid point calculation. 

 

When a node containing polygons is intersected, all the polygons at that node are 

tested with the line segment.  This test will terminate early if any of the polygons are 

hit.  The mid-point calculated by the node plane is not useful here because the 

polygons stored in the node do not lie precisely on the node plane.  They lie, at any 

orientation, within an epsilon distance of the node plane. 

 

6.5.3 BSP Epsilons 

Epsilons are relatively small numerical values used to control an error margin.  

Epsilons are most commonly used to preserve stability, particularly when working 

with floating point numbers where precision is limited and slides up and down the 

number range.  The BSP code makes extensive use of two epsilon values, with a 

couple more for less critical use.  Here is a list of the epsilons used: 

Major: 

• Polygons are classified during tree construction as being in front, behind, on or 

spanning a hyper plane.  This classification routine uses a construction 

epsilon.  This epsilon is critical for a) stability of the construction phase, b) 

number of nodes generated for the tree.  This epsilon causes the hyperplanes to 

have a thickness, otherwise they would be infinitely thin. 

• During tree traversal, the current line segment (or test shape) is classified as in 

front, behind, or spanning the current node’s hyperplane.  A test epsilon is 

used here.  This epsilon must be larger than the construction epsilon as it has 

to accommodate for the thick planes use during the construction phase and any 

error that may be introduced by traversal calculations. 

Minor: 

• Axis splits cause polygons to be classified against two bounding boxes.  Any 

polygon that is at least partially in a box is classified as intersecting, and is 
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stored in the node represented by that box.  The classification function uses a 

tiny epsilon for working with floating point values. 

• Polygons are described as if their edges form a set of planes.  The planes are 

pushed outward by a tiny margin to overcome floating point error and fill any 

tiny gaps that may unintentionally exist. 

 

Both the major epsilons described above are of critical importance to the efficiency of 

the BSP.  Understanding the role played by these epsilons allows them to be tweaked 

to provide a significant performance increase.  Here are some extreme examples:  If 

the construction epsilon size is larger than the entire mesh, the whole mesh will fit 

into a single node and every single polygon will be tested with each traversal.  On the 

other extreme, if the epsilon is almost zero, polygons will split others in the set, into a 

huge number of tiny fragments, repeatedly trimming tiny slivers off each other, as 

they reach the limits of floating point precision.  This is particularly observed when 

working with arbitrary polygon soups.  With tiny epsilons, care must be taken because 

a polygon may try to split itself, as its own points may not lie close enough to its own 

plane, as often occurs with greater than three sided polygons.  Correctly sized epsilons 

prevent both these extremes from occurring. 

 

Note that the epsilon values relate to a) the units of measure and dimensions of the 

mesh polygons, and b) the size of mesh features.  For example, a mesh that is 0.023 

units wide will have an epsilon, perhaps 1000 times smaller than a mesh that is 23.0 

units wide.  Also, if the mesh was 20 units wide, but had many features at 0.001 units, 

it may require smaller epsilons for both construction and traversal, to efficiently 

partition the mesh. 

 

6.5.3.1 Construction Epsilon 

The construction epsilon is necessary so that polygons can be classified as expected.  

Consider a cube, having six faces, with two triangles per face.  This mesh should 

produce a BSP that has six nodes that form a perfectly left or right weighted tree.  

This type of tree or sub tree represents a convex hull.  During construction, each face 

of the cube becomes a hyperplane for a node.  A node will hold the two triangles that 

form one face of the cube, however the future of the other eight triangles touching this 

plane is not as obvious.  These triangles must be classified as if they were entirely in 

front or behind, even though their points or edges are touching the plane.  So a 

polygons is classified like this: 

In front  →  Vertices are > +epsilon. 

Behind  →  Vertices are < -epsilon.  

On   → Vertices are > -epsilon and < +epsilon. 

Spanned  →  Vertices are < -epsilon and > +epsilon. 

Notice that only the polygon vertices are considered during classification, not the 

polygon plane.  Because the plane is thick, a polygon may have any orientation and 

still be classified as on the plane. 

 

6.5.3.2 Test Epsilon 

If the BSP test epsilon is calibrated to be slightly smaller than the distance that sample 

points are offset from the surface beneath them, a beneficial effect occurs.  Recall that 

most time is spent in point to point visibility testing.  Since both start and end 

locations are not on, but in front of their respective surfaces, and the test epsilon is 

smaller, the source and destination surfaces are never tested.  Only potential occluders 
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in between are tested.  If the test epsilon were larger than the sample offset distance, 

the source and destination surfaces would always be tested even though they could 

not be occluders.  As surfaces may be highly tessellated, this configuration can 

significantly increase performance. 

 

6.6 Polygon testing 

 

If the large numbers of scene polygons represent flat convex surfaces, they may be 

stored as n-gons (greater than three sided polygons) and tested with greater efficiency.  

Care needs to be taken when mesh data contains n-gons, but not all the polygon points 

lie on the polygon plane (within a reasonable epsilon).  In this case, the polygon 

should be tessellated into triangles to ensure stability, otherwise tree construction and 

tree traversal epsilon values will require enlargement that may adversely affect 

performance. 

 

6.6.1 Ray vs. Poly 

Determining the intersection of a ray and polygon is often a two-phase operation.  

First, the ray intersects the plane of the polygon, then that intersection point is tested 

to see if it lies inside the polygon.  If no extra information such as the polygon normal 

is precomputed, the fastest ray versus triangle test is reportedly the barycentric style 

test described by Möller and Trumbore (Möller et al. 1997).  Even compared to 

methods with precomputed components this method performs well.  It has the side 

effect of also computing the barycentric coordinates useful for mapping into the 

triangle for things like texture or normal sampling.  A slightly faster method for 

computing the intersection of a line segment and a polygon, uses the distance of the 

two line segment endpoints from the plane, to calculate the normalized time of 

intersection.  This test can early-out if both distances are on one side of the plane.  

The normalized time is then used to project a point onto the plane and a point in 

polygon test is performed. 

 

All kinds of point in polygon tests exist, but one of the simplest and fastest is to walk 

around the edges of the polygon in a clockwise manner and test if the point in 

question is to the left or right.  If the point is not to the right of any edge, then it is not 

inside the polygon and the test can exit immediately.  This method works for all 

convex n-gons.  Since the point lies on the plane of the polygon, this method need not 

occur in three dimensions, as only the two dimensions other than the dominant axis of 

the face normal are required.  A similar method turns the edges into planes.  A dot 

product test determines if the point lies in front or behind the plane.  Once again, this 

test need not be performed in 3D.  So, instead of storing three points and a normal to 

describe a triangle, two axes (2 bytes) and three edges are used to describe the 

triangle.  Each edge is a 2D normal and distance (total 3 floats).  The new polygon 

description is almost the same size as the original polygon vertices version but now 

the test if a point is inside a polygon is just: 

 
if ((edge[i].x * point[ix] + edges[i].y * point[iy]) < edges[i].d) { return false; } 

 

Repeated for each edge of the polygon. 
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As noted by Steve Worley, the only way to simplify further is if the edges were 

described as lines with the equation Cx+y=d.  The edges would need to be in 

homogenous space and horizontal and vertical lines would need to be special cased. 

 

6.6.2 Edge/Point reordering to improve point-in-poly early-out 

Both triangles and n-gons can have their edges reordered to accelerate point in poly 

testing (Green et al. 1993).  The idea is to bound the polygon with a rectangle then 

test how each edge would cut away the remaining space outside the polygon.  The 

method for n-gons and triangles is a little different, though conceptually the same.  

Imagine if the polygon was an octagon.  It would be best to test opposite edges first, 

rather than just work around the winding.  After the first four opposite sides had been 

tested, most (space) culling has occurred and an early-out likely achieved.  

Experiments with triangle edge reordering showed 0-1.5% speed increase, for the 

process using heavy point in poly testing.  As the precomputation time is low and the 

run time improvement always positive or negligible, this optimization may always be 

worth adding.  The implementation described in this paper does not use explicit 

bounding rectangles on individual triangles, but the voxel-like subdivision within the 

BSP is believed to create a similarity, causing this method to work. 

 

6.6.3 Translucent textures 

When testing polygons that have a translucent or transparent texture, care must be 

taken to prevent neighboring polygons that share and edge from being redundantly 

tested, causing extra filtering along the shared edge.  This problem can be overcome 

by recording the intersection time.  If another hit occurs on a translucent polygon at 

the exact same time, then it is most likely to be a shared edge and can be ignored 

(assuming polygons are not layered and coplanar). 

 

6.6.4 Coplanar polygons 

Polygons on the same plane with opposite normals are sometimes used to simulated 

double sided, thin objects such as plant leaves.  The back facing polygon to a ray test 

can be biased so it is not detected before the front facing polygon.  If this is not done, 

coplanar polygons may interfere when sampling normals on a surface. 

 

6.7 Lighting 

 

A simple lighting model is used by this implementation.  Direct lights use a lighting 

equation similar to that of the DirectX and OpenGL fixed function pipelines.  Surface 

lights and indirect lights use approximations of the radiosity form factor.  The 

intention is to rapidly produce a nice looking and representative, though not 

necessarily accurate lighting result.  Other more accurate lighting equations may be 

used for both direct and so called indirect lights.  The output of this implementation is 

a 24bit texture that is modulated or 2x modulated with the base diffuse texture(s).  As 

the result is a diffuse texture with shadow and light color information, specular and 

other effect lighting is added afterward for improved realism. 
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6.7.1 Approximate surface light equation 

 

Surface lights and Indirect lights both use equations that approximate the energy 

transfer between surfaces and are similar to the radiosity form factor.  Refer to figure 

8 and for a simple diagram of the lighting configuration. 

 

 

visibility
biasAreaAr

BA
×

+2

coscos

π
 

 

Eq 1: Surface and Indirect Light 

 

Visibility is determined by opaque occluders and translucent media.  It is typically 

just 0 or 1, but may be a RGB filter in the range 0-1 for each color channel. 

 

Equation 1 represents light attenuation.  The source light color and intensity is 

already taking into account the source emitter area effect.  As the lighting is 

calculated per texel, energy calculations and visibility testing are approximated by 

points and ray tests with relative areas introduced for consistency. 

 

The radiosity form factor represents the proportion of energy leaving one patch and 

received by another patch.  Figure 9 Shows a point to area form factor thats has an 

interesting geometric property.  The form factor is the area of the projection of patch 

k, projected onto a hemisphere centered at j, then projected orthogonally down onto a 

circle. 
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Fig. 8: This diagram shows the configuration of emitting and receiving patches.  In 

the described implementation, the emitter may be a Direct Surface Light, or a Virtual 

Indirect Light. 

 

 
Fig. 9: This diagram shows how surface areas influence each other, as if a patch is 

projected through a hemisphere and dropped onto a disc. 

 

Equation 1 uses an area bias to compensate for the fact that area light sources are 

simulated by point sources.  As described earlier, bright spot artifacts will appear 

close to point sources unless corrected.  Figure 10 demonstrates the numerical effect 

of the area bias in the lighting equation.  Figure 2 showed the visual effect. 

 

 
Fig. 10: The effect of the area bias.  The extreme intensity near to the light source is 

effectively clipped back with little effect elsewhere.  A bias of 1 is shown in this 

example. 
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6.8 Color Correction and Output 

 

When light sampling is complete, the color samples must be converted into a format 

suitable for rendering via texture mapping and viewing on a monitor.  The color 

samples are 32bit float per color channel, they will be converted to 8bit unsigned 

integer per color channel.  Converting number ranges in this way is often called 

quantizing. 

 

If the sample values were between zero and one, the conversion would simply be a 

matter of scaling to the new number range and losing precision.  The samples actually 

range from zero to infinity, or at least some large positive number.  Because of this 

unknown upper bound, the values must be clipped and optionally adjusted in some 

way. 

 

The human eye and brain combination is capable of recognizing millions of levels of 

brightness, from the darkness of an overcast night, to the blinding light of the sun on a 

clear day.  Computer video cards typically allow a color value between 0 and 255.  

Monitors often have an analog color range, but can only achieve the darkness of a 

blank screen and the brightness of a fully lit pixel due to the limitation of the CRT, 

LCD or other display technology being used. 

 

If two lights shone on a single surface, a very bright magenta (red, blue) and an 

extremely bright cyan (green, blue), the surface would be saturated in color across all 

components.  Since the cyan light was brighter, it would be preferable if the final 

color was not clipped to white (full bright), but showed the hue of that intense color.  

The following algorithms describe the color clipping via normalization and color 

clipping via saturation: 

 

Clip Normalize – Preserves Hue 

max = largest color component 

if max > 1.0 

 for each color component 

color = color / max 

 

Clip Saturate – Just clips components, often resulting in white 

for each color component 

 if color > 1.0 

  color = 1.0 

 

Lights vary in intensity and the human eye automatically adjusts to the lighting 

situation in a short period of time.  Photographs and images cannot capture exactly 

what the eye would see, but the controls on cameras allow adjustment to make the 

image at least look representative.  One such control is exposure (Elias 2003).  

Exposure adjustment has the effect of changing the intensity of bright and dark areas 

in the image.  Equation 2 describes the adjustment operation.  Figure 11 shows a 

comparison between the original and two settings of exposure adjustment. 
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Fig 11: Exposure adjustment.  Left set to K=0.5, Right set to K=2.0, and Middle 

original image without adjustment.  Notice the obvious hot spots in the non-adjusted 

middle image where intensity is clipped. 

 
Klightebrightness ×−−= 1  

 

Eq 2: Exposure equation.  K is a correction constant. 

 

As the exposure adjustment works on the original high precision color values, it must 

be performed before color quantizing.  The final step before outputting the color data 

is to combine multiple texture samples that were taken for anti-aliasing.  This step is 

performed after quantizing in order to soften high contrast edges as part of the anti-

aliasing effect.  For example, if two over-bright samples were combined, the result 

would still be over-bright, and will be clipped for no tangible effect.  Samples that 

were already clipped will merge to produce better in between values. 

 

6.9 Lightmap Texture packing 

 

Texture pages typically represent power of two sized, possibly square textures that are 

efficient or are the required dimensions for video hardware.  Sizes such as 256x256 or 

512x512 are common.  Many such texture pages may be required to store the lighting 

result of a scene. 

 

Lightmaps may be generated from individual polygons, projected neighboring 

polygons, or complex parameterised charts of polygons.  Whichever way lightmaps 

were created, they will be numerous, and will likely have complex shapes.  The 

lightmaps must be packed into the smallest number of texture pages to make efficient 

use of limited memory. 

 

Mip mapping has the effect of blurring nearby texels together at every subsequent 

level, eventually leading to a 1x1 texture that often represents the average color of the 

whole texture.  When different textures are packed together into the one texture page, 

the average, and even the neighboring texel colors are often unrelated.  Artifacts that 

show discoloration become visible, with increasing frequency as lower level mip 

maps are selected.  In an effort to reduce this problem, unused texture space may be 

filled with texels relating to the lightmap or extra border texels may be added.  Many 

software programs that use lightmaps only allow or generate the top few mip levels. 

 

Textures need to be optimized for cache efficiency.  Video memory is limited, and the 

cost of swapping textures in and out of video memory, or chip memory is high.  
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Textures near each other, that will likely be rendered together, should be packed 

together.  The classification of what near is can be implemented in various ways.  

Lightmaps that are classified as near each other will be assigned a grouping identifier 

that will cause them to be packed together if possible. 

Examples of grouping classifications are:  

• The object identifier or index in the scene set. 

• A room or cell that may define parts of the scene. 

• A octree division of the scene into blocks. 

 

6.9.1 Box sorting 

Optimally sorting boxes and other shapes is known as a hard problem because 

depending on early sort operations, that may appear to be good, later ones are 

effected, perhaps negatively.  This is true for BSP construction.  Luckily there are 

simple alternatives to find the ultimate solution, and these simple approximations 

yield excellent results. 

 

Boxes are stored in groups, so the sort process works on a group of boxes that should 

be packed together.  Boxes are sorted from large to small.  Height and width form the 

major and minor sort keys, so that same height boxes are still ordered based on width.  

Identical size boxes have no defined order.  The idea is to create a set of free boxes, 

that are sorted small to large, and place the lightmap boxes into these free boxes.  

When unused space remains, it is split into more boxes and each of these is added to 

the free list. If there are no free boxes available, a new full size box is created, 

logically representing a new texture page.  The following algorithm describes the 

process. 

 

Add lightmap bounding boxes to a wait list, where they wait to be placed. 

Sort all wait boxes from large to small, by height then width. 

While boxes remain in the wait list 

Find a free box that is just big enough to store this wait box. 

(Free boxes are kept sorted from small to large.) 

If there are no free boxes, a new texture page is created at the 

maximum texture size.  This new page has one full size free box, and it 

is added to the free list. 

The first box in the free list that is large enough to hold a waiting box 

is used. 

Calculate up to two smaller boxes from unused (usually L shaped) 

space around the placed box, and add these to a free list’ 

Call the empty texture space reclaim function. 

Free unused free boxes 

Call the unused texture space reduction function. 

 

6.9.2 Unused texture space reduction 

When texture pages are less than half full, an optimization can be attempted that will 

create two, quarter size textures and pack them.  The process may continue 

recursively for several iterations before limits such as the minimum texture size is 

met, or lightmaps use most of the texture page space.  A texture page is considered 

half empty when less than half the space measured vertically is used.  When this 

occurs, it is already known that the height of the tallest box is less than half the page 



 28 

Height.  If the width of widest box is also less than half the width of the page, then the 

page is a candidate for reduction.  Two quarter size pages are created and added to a 

free list.  The contents of the page are run through the same algorithm described 

above so that the boxes are placed once again. 

 

5.9.3 Empty texture space reclamation 

When a lightmap is placed, it uses up a rectangle equal to its size, but the lightmap 

image may be thin diagonal, hollow, or a complex convex shape, causing much 

texture space to be wasted.  At this point in the process, a space reclaiming function 

may be called in an attempt to locate (rectangles of) free space and add them to the 

free list so they may be used.  Many complex algorithms could be developed to locate 

this space.  Many other methods could have been used to reduce this situation, such 

as: 

• Splitting convex lightmaps during their construction phase.  This would create 

smaller, convex shapes, but increase the number of seams and discontinuities 

in the lightmaps. 

• Rotating lightmaps from diagonal to horizontal or vertical alignment, or to fit 

arbitrarily shaped free space.  Although diagonal shapes may be corrected, 

and other shapes may benefit from improved fitting, rotation causes variation 

in the texture axes, highlighting seams. 

 

Both these methods add complexity, extra work and generate new artifacts, even if 

they may increase texture space efficiency.  It is debatable whether these methods are 

even worthwhile, as discussed later. 

 

The chosen method simply samples the lightmap at regular intervals, such as up to 8 

times in width and 8 times in height, and attempts to flood fill rectangles.  If a seed 

position was not flagged as empty (by flagging with a NaN, or other Id), a rectangle is 

grown, one row or column at a time in each of four directions until it is blocked.  If 

the rectangle is larger than some threshold, it is added to the free list and available for 

use by other lightmaps. 

 

Tests showed that increasing and decreasing the configuration parameters, though 

reclaiming more or less space, did not reduce the number of texture pages used.  See 

figure 12 for some examples.  Attempting to reclaim more space takes lots more time, 

but pays rapidly diminishing returns.  The reason for this is that number of texture 

pages is largely determined by the number of large lightmaps.  The smaller lightmaps 

merely fill out the wasted space left by the large ones.  The large lightmaps may be 

efficient, with most of their space filled with valid color samples, or inefficient, with 

large quantities of flagged invalid samples.  The inefficient cases are usually hollow, 

diagonal or concave.  Since the flood fill method predominantly reclaims square 

shapes, this is not a problem, because horizontal and vertical rectangular shaped 

lightmaps are already packed well by the original method, and contribute little to the 

number of texture pages used.  The inefficient cases are readily filled with boxes and 

their space reclaimed.  Note that this method works best when lightmap shapes are 

mostly homeomorphic to discs.  If they were all, for example, identical size triangles, 

they would not pack at all, and reclaimed space would remain unused.  There are 

potential cases that would hinder the regular sample flood fill method.  If a lightmap 

looked like a grid that just happens to lie in perfect alignment with the sample pattern, 
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it may contain plenty of free space, but none if it would be discovered by sampling.  

This pathological case is unlikely to happen, and if it did occur regularly, a possible 

solution is to simply jitter the regular sample points by up to half their step size. 

 

 
Fig. 12: Left, Middle and Right show small to large amounts of reclaimed space respectively.  In 

these images, Green (Light Gray in B&W) is reclaimed space, Red (Dark Gray in B&W) is unused 

space and lightmaps fill the used space.  Note that although lightmaps are shuffled around, no more or 

less texture pages were used, even in these three extreme examples. 
 

6.9.4 Box sorting performance optimizations 

When a naïve box packing process is run on tens to hundreds of thousands of 

lightmaps, it may start to slow down.  The QuickSort algorithm was used to sort wait 

boxes.  A fast insertion sort maintains the free box list.  A block memory allocator 

rapidly feeds the process with new free boxes.  These tools significantly reduce the 

packing time that would otherwise occur with a brute force implementation. 

 

6.10 Image Improvement Techniques 

 

6.10.1 Mutli Sampling 

Mutli sampling lights by turning point sources into surfaces has some anti aliasing 

effect, but is only part of the solution.  Various parts of a scene will not be classified 

such that a soft shadow will render there. 

 

6.10.2 Anti-aliasing 

The two main types of anti-aliasing experimented with in this implementation are 

multi sampling and super sampling.  Multi sampling uses a table of offsets such as the 

corner and center points of a texel.  These extra samples are then averaged, possibly 

with weighting.  Super sampling merely renders a higher resolution output, typically 

2x or 4x some size, then filters the result down.  A quick and effective alternative is to 

sample texel corners, as this logically only adds one extra row and column of unique 

sample points.  With this method, the samples at two edges of each texel are shared 

with its neighbours so they really don’t need to be computed at all.  The processing 

cost is tiny and the result is adequate for our purposes. 

 

Unfortunately all types of anti-aliasing tend to reduce the effectiveness of correcting 

texel samples located inside solid space (discussed later in this section).  This occurs 
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simply because multiple correct samples are merged to produce an incorrect result.  It 

is not possible to assume that lighter or darker sub-samples are more correct than each 

other, as it may be light or shadow that is bleeding into the wrong place. 

 

6.10.3 Detection and correction or samples inside solid space 

Often, near walls, or places where two surfaces meet, texel samples are generated 

such that they bleed the wrong color.  For example, a wall made from two opposite 

facing polygons, with no thickness, may divide a floor that is lit on one side, but not 

on the other.  Depending on where the texel sample is, light or darkness may bleed 

from the other side of the wall.  To correct this, walls, as in real life should be 

modeled with volume.  The sample texel size should relate to the feature size of the 

model geometry.  If the model is tiny or has intricate details such as thin pipes, a 

higher resolution texel is required. 

 

Another solution is to use CSG (Computational Solid Geometry) methods and turn the 

scene meshes into a skin.  All overlapping and intersecting polygons are resolved into 

a skin around the solid space with hidden and junk parts of the mesh removed.  This is 

a difficult process to make robust, introduces many new mesh faces, modifies the 

model geometry, and still doesn’t help in cases where objects are stacked on each 

other without merging. 

 

A generic solution was found that works with polygon soups.  The method is stable 

even when meshes contain triangles that intersect, are poorly shaped and do not form 

a manifold style surface.  However meshes that contain closed manifold style surfaces 

that do not obviously intersect produce much better results.  This method tries to 

determine if a texel sample point is inside solid space, and if so, correct it by shifting 

the sample point up to one texel width away.  First the sample point is elevated 

slightly away from the surface, via its normal, or the polygon face normal.  This is a 

good practice because it can prevent accidental collision with the owning face, as well 

as facilitate other optimizations. 

 

A set of tiny rays are cast from this point.  Only 4 to 10 rays are necessary for good 

results.  If any of the rays hit a back face, then the texel sample is inside solid space, 

otherwise it is okay.  If the texel sample point was in solid space, a set of position 

offsets, ordered from near to far relative the original sample point, are tested.  When 

none of the shift attempts succeed, the sample point is left unmodified, because it is 

likely to be well inside solid space and remain unnoticed.  See figure 13 for before 

and after results.  This method runs reasonably fast as it exits early when the sample 

point is already valid, which is most of the time as the output resolution is increased.  

The tiny ray tests are not very expensive as only a small portion of the scene is 

considered for each test.  It may be best if objects that rest on top of each other are 

made to intersect each other slightly, in order to ensure that sample points between 

them are detected as in-solid. 
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Fig. 13: Texel sample points inside solid space. Left: Color bleeding from samples located in solid 

space.  Right: Bad sample points detected and corrected, by shifting to a valid nearby location. 
 

 

6.10.4 Texture seam reduction 

Whether textures are generated from individual triangles, axis projections, or a 

minimal distortion texture atlas (Lévy et al. 2002), when the textures meet up along a 

polygon edge, they may display an artifact called a texture seam.  Refer to figure 13 

for examples of this. 

 

 
Fig. 14: Texture seams. Several seams are visible. Left is unfiltered, right is bilinear filtered. Both 

sets show curved surfaces with different dominant axes mapped with low-resolution texture and 

rendered with bilinear filtering 

 

The following are some factors that contribute to the visibility of seams: 

• Texel orientation. The two dimensional U and V directions may not be 

identical between polygons, particularly if the polygon normals have different 

dominant axes (such as one major in +X and the other major in –Z). 
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• Texel Size and shape.  Texels are often aligned with two of the world axis and 

look like Lego™, but because they are mapped to sloped polygons, the final 

shape of the texel is distorted.  On a single face, it may be skewed into a 

diamond shape.  Across several smoothed faces, it may look quite unusual.  If  

polygons use different texture resolutions, then the texels on either side of the 

edge will be of different size. 

• Texel origin relative to vertex position.  Unless texel origins are snapped to 

vertex positions (introducing a bunch of other issues), the texture axes don’t 

line up, or line up along one shared axis only. 

• Texel color.  If the texture color along a seam is of high contrast, the seam will 

be much more visible. 

• Texel neighbors. When bilinear filtering is used, four texels are sampled in 

vertical and horizontal directions.  If the neighboring set of colors is not 

matched across the edge boundary, and does not extend at least one texel, 

seams will appear. 

• Mip maps.  When mip mapping is used, neighboring texels are recursively 

filtered down.  Mip mapping of packed lightmaps causes completely unrelated 

colors to be merged and displayed.  Mip mapping within a single lightmap 

merges colors such that they may no longer match their edge neighbors. 

• Bilinear filtering.  Bilinear filtering exaggerates the seams initiated by most of 

the above factors. 

 

Texture distortion is inevitable when a curved surface is projected onto a plane, or 

flattened in some way.  This is the classic map makers problem.  The texture seam 

issue is very much related, as curved surfaces, when flattened must join up, even if the 

entire surface is flattened into a single chart. 

 

Surfaces that are not curved do not pose a problem, as samples along polygon edge 

boundaries may simply be sampled beyond the boundary onto the next shared surface.  

If there is no shared surface, the sample point can be pushed back inside the original 

surface polygons.  Extra border samples created to improve bilinear filtering or mip 

mapping may be handled in a similar manner, shifting or sampling outside, rather than 

by extrapolating existing samples. 

 

7 Optimizations 
 

7.1 Caching 

 

7.1.1 Last hit poly/object caching 

It is possible to take advantage of coherence for visibility testing.  After all, if a 

visibility test for one sample intersected an occluder, there is a reasonable chance that 

the next sample may also be occluded by the same object or polygon.  Both these 

items are cached, the last polygon that was hit, and the object owning that polygon.  

The visibility ray test simply checks the cached polygon first.  If that polygon was not 

hit, the cached object is tested first.  If there is still no hit, the cache is invalidated and 

the test continues without the benefit of the cache.  Experiments showed that allowing 

the cache to have a lifetime of up to three misses could increase performance, but 
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more experiments would be required to check if there is consistent benefit.  Caching 

can provide a significant performance increase.  An estimate of 30% is not 

unreasonable, with better performance at higher resolution and when occluders are 

regularly close to light sources. 

 

7.1.2 Potential occluder object test sets 

As a lightmap may consist of multiple polygons, and a light may consist of multiple 

samples, it can be worthwhile bounding these higher-level objects and caching some 

information about their relationship.  If both the light source and the destination 

surface have bounding boxes, a convex hull can be computed that bounds all light 

rays that could possibly be considered between the two entities.  This hull can be used 

to collect a list of objects that are potential occluders, and this reduced set of objects 

may be reused for all ray tests with between the light and the destination object or 

surface.  The cost of computing the bounding hull is small and amortized over the 

(usually) numerous ray tests.  Since the two objects are boxes, the bounding hull may 

be computed directly, without the need for generic algorithms like QuickHull (Eddy 

1977). 

 

7.1.3 Redundant poly tests in the BSP 

Polygon references are stored in the BSP multiple times.  This occurs because the 

polygons are not physically split, but are logically split, so a hyperplane dividing a 

single polygon merely causes two references to the same polygon to be stored.  This 

means that both parts of the polygon may be tested at different times.  It is possible to 

flag the polygons in a way that prevents redundant testing.  Enabling or disabling this 

cache proved to provide a tiny speed increase or decrease.  The benefit is only 

realized when lots of redundant testing occurs.  The effectiveness is highly dependant 

on the BSP tree construction method, configuration, and the mesh geometry.  With 

highly optimized point in poly testing and the relatively expensive cost of random 

memory access to a flag or cache table, this potential speed-up should be attempted 

with care. 

 

7.1.4 Precalculated lighting values and constants 

Some parts of the lighting equations may be pre-calculated.  Anything that is constant 

should be calculated and stored.  Some of the non-constant parts of the lighting 

equation that are reused should be stored locally to baby sit the compiler.  If high 

precision is not required, storing reciprocals and multiplying can reduce the number 

of divisions.  Along that line, modern PC CPUs have low precision floating point 

instructions that can speed up reciprocal divides and square roots.  Some equations 

can be merely reordered to make better use of precomputed constants.  The spot light 

specific code benefited from this, with divisions completely removed. 

 

7.2 Early outs 

 

The fastest code is the code not executed.  There are various tests, and parts of the 

process where the result is logically determined before it is exhaustively computed.  

Here are some: 

• Light behind surface. Simply test if the incident light would strike the front 

face of the texel sample.  This is a dot product test that is already part of the 

lighting equation. 
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• Insignificant light. Like other types of radiation, light decays or is attenuated 

as the distance from the source increases.  The tricky part here is determining 

when the light energy is no longer significant and can be ignored without 

being noticed.  An effective way to determine if the light is significant, is to 

compare with a minimum energy threshold and a percentage of emitted light 

threshold, which ever is larger. 

This early out occurs before the (relatively slow) visibility test and can fire up 

to 40% of the time (with 5-30% more common), but is highly dependant on 

the number, size, and position of lights.  Remember that this lighting method 

relies on using large numbers of (often tiny) lights, so the conditions for 

culling are ideal. 

The values found to be reasonable in the described implementation were: 

Fixed Light Threshold = 0.04% of saturation, or 0.1 / 255 for 8bit final color 

components. 

Emitted Light Threshold = 0.1% of source energy, or 0.1 * LightIntensity. 

These values can be adjusted for increased speed, or output accuracy.  In the 

described implementation, the visual difference in output was 

indistinguishable through a range of extreme tests, while the performance 

increased significantly. 

If the thresholds are set too high, a scene may suddenly become dark as lights 

are culled too early.  If the thresholds are set too low, no performance increase 

will be realized.  The combination of the fixed and relative threshold, as 

described, greatly reduces the chance of sudden visual artifacts due to changed 

lighting conditions. 

• Light source too far from destination object or lightmap.  Lightmaps and 

objects have simple bounding volumes such as boxes or spheres.  If the closest 

point on the bounding volume is further from the light than a threshold, then 

that light’s contribution is insignificant, and should be ignored.  The threshold 

value is calculated in a similar manner to the insignificant light test described 

earlier.  The threshold should be conservative, only exiting early if the light is 

definitely too far away to consider. 

• High level scene information.  High level scene information such as Cell & 

Portal connections, Rooms, Object hierarchies and visibility tables should be 

used whenever they are available, and if their knowledge could be coded as a 

early out test.  For example, a scene with Cell & Portal descriptions may have 

a Cell to Cell visibility table.  That table can be simply accessed to determine, 

for example, that a light inside Cell A could not possibly be seen in Cell B. 

 

Here are some non-early outs: 

• Back face of polygon.  It may seem intuitive to back face cull as you would 

with normal rendering, but if the scene represents solid objects and the test is 

for occlusion only, then checking for back faces is a waste of time.  It is best 

to treat polygons as double sided as long as they are opaque. 

• BSP Traversal.  When traversing a BSP for the sole purpose of visibility 

testing (shadow testing), there is no need to logically traverse a ray or line 

segment from start to end.  There is also no need to delay testing polygon 

contents if there is a possibility the polygons might be intersected by the test.  

The idea is to test the polygon contents stored in the BSP tree as efficiently as 

possibly, not using naive or generic ray testing traversal methods which would 
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provide otherwise useful things such as first hit results.  The intention is to exit 

as soon as any occluder is detected. 

 

8 Future extensions 
 

1. The technique presented in this paper could be implemented in hardware for 

both view dependant and view independent rendering.  Today’s programmable 

GPUs could handle the most time consuming part of the process: lighting and 

visibility testing. A pixel shader could compute per pixel lighting values and 

add them to a destination buffer.  A stencil or shadow buffer could be used to 

perform visibility testing between lights and scene geometry. 

 

2. The movie ‘Final Fantasy: The Spirits Within’ used many laboriously hand 

placed fake lights to simulate global illumination (though it did use a photon 

map for caustics) (Christensen 2001).  The part of this process used to identify 

and create potential indirect light sources may easily be implemented as a 

software plug-in for other renderers.  This could assist artists, or relieve them 

entirely of the task of placing many fake lights to simulate realistic indirect 

light.  First, a (relatively small) photon map is constructed from the scene 

geometry and light sources.  An arbitrary number of fake lights are then 

quickly created and passed back to the application for acceptance or 

modification by an artist. 

 

3. Currently the texture seam issue is not resolved adequately, so this area needs 

more work.  Recent research on automatic texture atlas construction is yet to 

show an efficient, robust solution to texture seam removal, beyond the 

significant reductions achieved by the various methods.  Many of the 

parameterization algorithms still introduce significant texture distortion 

making them unsuitable for our use. 
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Appendix A: Sample output 

 
Fig A.1: A test room lit and rendered in real-time by the described technique.  Only 

the lightmaps are rendered. 
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Appendix B: Early attempts - Described by the author 
 

In the past, I had written light mapping tools for use with computer games, that 

produced results similar to those seen in the Unreal™ and Quake™ games.  I used 

hybrid mixes of ray tracing and radiosity, favoring a method of blending high 

resolution ray traced direct light with low resolution radiosity style indirect light.  

Although the results looked impressive (at least compared to the competition) I was 

unhappy with many parts of the process.  The radiosity phase required passing the 

scene geometry through a potato chip cutter to form patches of reasonable size.  Form 

factor calculation could have been stored in memory, had I had 4-10gb of it.  The 

whole process really needed several CPUs working in parallel to reduce the process 

time. 

 

Now, some years later, and even with this new technique, not all problems are solved, 

and some new ones are created.  Expectations are higher, geometry poly count is up, 

and smooth surfaces are frequent.  I started out investigating Photon Maps and pretty 

soon became quite excited by what I was reading.  I hurriedly implemented a simple 

photon mapper and it worked nicely, just as the papers said.  But, and there’s always a 

but. I didn’t at first realize why no one was doing what I was trying to do, that is, 

produce a final result by directly visualizing the photon map.  The two major 

problems with the photon map are: 

1) The photons are sampled using random and statistical means and look blotchy.  

Filtering is required at the very least in order for the results to look acceptable. 

2) The edges of polygons, the edge of the scene, and overlapping polygons cause 

border artifacts where the photon energy density is sampled incorrectly 

producing either extra bright or extra dark output depending on the 

implementation.  Refer to figure B.1 for a basic border case. 

Refer to figure B.2 shows output illustrating both these issues.  Both of these 

problems do have solutions, such as using more photons or clipping the geometry to 

the sample shape, or using a z-buffer to calculate surface area.  All of these solutions 

however, cause a dramatic slowdown and detract from the elegance of the photon map 

technique.  Modern ray tracers often use the photon map to direct some other indirect 

lighting technique, or build an irradiance map which is sampled as part of an indirect 

light contribution process. 
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Fig. B.1:  Two photon samples.  The photon density sampled on a border is incorrectly estimated.  The 

sample size has grown too large while finding n samples.  The geometry independent photon map does 

not contain knowledge of borders and density correction methods are inelegant. 

 

 
Fig. B.2: An early screen showing direct light via ray tracing combined with indirect light via direct 

visualization of the photon map.  Notice the extra dark edges and corners caused by incorrect density 

estimates.  Also notice the splotchy indirect light cause by randomness. 

 

Quite disheartened, I feared I may have to give up the photon map technique 

completely, and looked at various other methods.  I briefly investigated spherical 

harmonics (Sillion et al. 1991), but it did not appear to be useful to this specific task.  

I consider spherical harmonics to be an energy reflectance representation compressed 

on the surface of a sphere, and may be useful for some other, perhaps even real time, 

approximate lighting solution. 

 

After browsing a paper on Instant Radiosty (Keller 1997), I recalled an idea that I had 

been thinking about for years and experimented with before: Turning indirect light 

into direct light sources.  My earlier attempts had all failed, but I realized I now had 

the tools I needed; a photon map to collect emitted and reflected energy, and a 

balanced kd-tree to sample it back into light sources. 
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I initially used an accumulation buffer (as Instant Radiosity does) to test this new 

technique, but found that although it produced a artifact free result, the lighting was 

bland and low in contrast.  Hot spots near lights disappeared and areas with little light 

became even darker.  I called this the ‘chemo’ method since both the good and bad 

parts of the solution were removed; the high contrast lights, and the artifacts 

associated with the virtual light technique. 

 

I tried merely adding light contributions to the output, and although this produced 

excellent lighting results, the bright spot artifacts near the light sources were 

unacceptable.  Biasing the light source area in the lighting equation proved to 

effectively remove these artifacts while preserving the light integrity. 

 

Many more challenges remained.  The new technique turns the few lights in a scene 

into hundreds or thousands of lights.  Accelerating the quantity of light samples 

required carefully choosing, implementing and configuring various acceleration 

structures. 

 

B.1 Optimization 

Something that the author has learned about low level optimizations, is that they are 

highly machine/system dependant, and the rules change over generations of hardware.  

For example, current CPUs have high arithmetic performance and relatively slow 

(non-cached) memory access.  Thus techniques that involve precomputation or look 

up tables for acceleration, should be used with great care. 

 

Unfortunately most current CPUs (and GPUs) realize their full potential only when 

performing a large homogenous process.  This low level parallelism is difficult to take 

advantage of without restructuring code (often into an ugly or non intuitive state), or 

spending large amounts of time writing and testing assembly code.  The best 

experience is when the compiler identifies code that could be optimized with vector 

operations and automatically does so.  Vector and Matrix manipulation are obvious 

candidates for such optimization, but are not always part of a bottle-neck inner loop.  

As always, operations like square root and divide consume disproportionate amounts 

of clock cycles.  Ordering conditional statements to aid branch prediction is useful.  

Packing data into minimal structures, aligned in memory at contiguous addresses, is 

critical for efficient memory access.  Object Oriented methodology should be used 

with care in performance critical areas lest they introduce hidden, unnecessary cost.  

Imagine if each photon structure was derived from a base object class, allocated with 

new and implemented virtual function access to member data.  Thought that may 

sound amusing, during the authors working life, he has seen commercial code, usually 

(but not always) written by enthusiastic junior programmers doing things exactly like 

that. 

 

B.2 Strange Discoveries 

During development, some unusual discoveries were made relating to performance.  

Further investigation revealed these issues are known, though rarely highlighted. 

Calculations involving INF (infinite) and denormal (extremely small) numbers can 

approach 1000 clocks of CPU time, or take several hundred times longer than 

expected.  NANs will also cause massive slowdowns, but will not occur unless there 

is an error.  The penalty times differ greatly between CPU brands and modules such 

as the FPU and SSE found on the Pentium 3 and 4 CPUs. 
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Appendix C: The kd-tree 

 
Fig C.1: kd-trees.  Unbalanced, Balanced, Stored as Heap and Dynamized versions. 

 

The kd-tree used in this implementation is similar to the one described by Jensen.  

The structure is a balanced three-dimensional binary tree that is stored like an array 

and similar to a heap.   The index of each element implies its location in the tree 

without the need for child pointers (such as Left & Right or Front & Back.)  Because 

it is balanced, if the last branch in a sub tree has a single child, that child must be the 

Left child as the Right child index is out of range. (That is why trees constructed this 

way are often called ‘left balanced’ binary trees.)  The tree is constructed using a 

median split approach.  The algorithm is a ‘divide and conquer’ method that is very 

similar to the QuickSort algorithm. 

 

The kd-tree data can be constructed with the root node located at [0] or at [mid].  If 

the root is at [0] then the children are located at curIndex*2+[0,1].  This method could 

possibly provide better cache and stack performance.  If the root is at [mid], then 

children are located at (endIndex+startIndex)/2+[-1,1].  This method allows all 

children to be found between the start and end indices and is the method used by this 

implementation. 
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Dynamic kd-tree 

Kd-trees are rarely dynamic because they realize their speed from careful 

construction, something that cannot occur with arbitrary dynamic data.  Exported 

mesh data is often near worst-case for a dynamic kd-tree as it does not appear in a 

spatially random order at all, thus causing a dynamic tree to grow in a very 

unbalanced fashion.  Testing for uniqueness while adding vertices is also a worst-case 

scenario because the Insert and Find operations are interleaved.  Kd-trees are most 

efficient when all data is added, and then the tree is balanced.  Search operations may 

then be performed in a highly efficient manner.  The kd-tree was dynamized by 

adding new data to an array that could be accessed as a second phase within the Find 

operation.  If data is removed, deleted nodes are flagged as removed, but not actually 

removed from the structure.  Periodically the tree is rebalanced, with the deleted 

nodes removed and recently inserted nodes distributed appropriately. 
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Appendix D: Notes on the Polygon BSP 
 

The BSP nodes 

The BSP nodes were originally homogenous and referenced by indices rather than 

pointers.  Indices have many benefits such as simplifying serialization of the structure.  

Indices can be shorter than the pointer word size and indices can store other flags in 

unused bits.  Since the BSP contains some nodes with axis aligned planes and others 

with arbitrary planes, the axis planes stored unnecessary data causing memory to be 

used less efficiently.  Two different node structures were created, with different sizes.  

Although stored in contigous memory, the nodes are now referenced with pointers.  

An average of 20% of the nodes (range 15-30%) are axis planes, and tests showed that 

a significant amount of time was lost due to Level1 cache misses.  Mixing smaller and 

larger nodes improved memory efficiency and increase process speed by 9%. 

 

Some other failed BSP optimization attempts were: 

• Balanced binary tree.  The intention was to control tree size and make 

traversal times more consistent.  The result was consistently large trees and 

consistently longer traversal times.  Balanced branches do not help in practice.  

Dividing space is more important. 

• Least cost polygon split planes determined by favoring node balance, split 

polygons, or polygons on the plane.  None of these choices or combinations 

consistently produces better than ~2% improved traversal times than random 

or first polygon choices.  However, rejecting expected bad polygons like > 

30% splits may help. 

• Arbitrary split planes constructed using geometry data such as edges and 

vertices rather than polygon faces.  The result showed that objects like a 

sphere could be split into more pieces than the single sided convex hull that 

would otherwise be expected.  The traversal cost also proved to be slower on 

average.  Adding more split planes can increase the traversal cost and must be 

done with care. 

• Tree constructed with only axis aligned planes, or only planes from the 

contained polygons.  Neither of these methods are optimal when used alone. 

 

Some other potential, but not implemented BSP optimizations could be: 

• Try to add top level nodes to the tree that are effectively simple bounding hulls 

around (particularly disassociated) bunches of geometry.  At least one paper 

describes a similar method, though the results showed that it had a positive or 

negative effect depending on the mesh/scene.  Perhaps manually splitting a 

complex object into multiple parts with simple bounds, to be queried as an 

earlier test, would be better than attempting to integrated such bounds into the 

BSP. 

• Test fire rays from outside and inside the mesh and use the resulting statistical 

information, in some way, when deciding how to construct the tree. 

• When the top levels of the BSP are created in this implementation, bounding 

boxes are known, representing the voxel dimensions.  It would be nice to pass 

convex hulls to polygon-plane splits further down the tree.  As polygon-planes 

divide space, the hull must be clipped.  Using this information, better splits 

could be found, to divide the space rather than naively divide the geometry.  
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This method may have the greatest potential, if it could be done efficiently.  In 

addition, polygon points/edges could be reordered optimally for early-outs 

based on this knowledge. 

• Actually split the polygons, build the tree, then throw the split polygons away.  

This method was tried in an earlier implementation.  Tree construction may be 

slowed by the resulting huge numbers of polygon fragments and inaccuracy 

may be introduced with tiny, sliver polygons. 
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Appendix E: Process performance statistics. 
 

Process test results 

These test results were gathered at one point during the development of the process.  

They may not accurately represent the current or potential performance of the process.  

In addition, some debugging and statistics gathering code was enabled in the test 

build.  The test results are provided for the following reasons: 

• To compare image quality with different settings. 

• To compare process time with different settings 

• To provide rough figures of process efficiency. Eg. Does this technique 

require minutes, hours or days to produce usable results? 

 

Notes on this scene and the test output: 

• The tests use the same texture resolution throughout the scene.  Each object, or 

part of an object could have used a different resolution for a more efficient 

result.  For example, the door knobs and tap handles are small features that are 

lit poorly.  These would greatly benefit from higher resolution, while the 

ceiling and some bench surfaces could have used a lower resolution without 

compromising the quality. 

• The lamp shades covering three of the lights present a difficult case for the 

indirect lights.  Many virtual lights are clustered around the lamps light source, 

on the inside surface of the lamp shade.  A large number of indirect lights are 

required to reduce banding caused by the high intensity light from the lights in 

the lamp shade. 

• The table of statistics shows that the total time is determined by the number of 

texels (the surface area and the lightmap resolution) and the number of lights 

(a combination of multi-sampled direct lights and virtual indirect lights). 

• Test1 is darker than the other tests.  If too few virtual lights are used, the 

indirect light in the scene is not approximated accurately enough and may look 

noticeably different.  The minimum number of indirect lights to produce a 

consistent approximate result does vary from scene to scene.  A rough figure is 

500-1000 indirect lights, but as little as 200 may be adequate for simple 

scenes.  Test3 used 1000 indirect lights and performs well.  Only the hard 

cases of the lamp shades highlight inadequate numbers of indirect lights in 

those areas. 

• Test4 uses the highest resolution, the largest number of lights, and more 

photons than earlier tests.  Notice that the overall brightness is relatively 

similar to Test2 and Test3 that use one half to one tenth as many indirect 

lights.  Also note that the light distribution in Test4 is the same as Test6 that 

took much less time by generating a lower resolution output with the identical 

light settings. 

• Observation of the time and quality statistics shows that varying the number of 

light samples or the lightmap texture resolution can produce similar lighting 

results with dramatic differences in processing time.  Quick previews can be 

performed in minutes, useable results in minutes to hours and high quality 

results in many hours. 
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System Configuration: 

Intel Pentium 4 2ghz 

WindowsXP Pro 

512mb PC2100 DDR RAM 

(Up to 50mb RAM actually used by process, when photon map, or output textures 

exist in memory.) 

 

Scene Statistics: 

Number of Polys: 67131 

Number of Lightmaps: 5237 

Number of Mesh objects: 35 

Number of Smooth groups: 3227 

Number of Light sources: 5 

Scene Dimensions:  11.4m x 10.0m x 2.5m 

 

Process Options: 

Anti aliasing - off 

Solid space sample correction  - off for Test1,2,3, on for Test 4,5,6 

Reclaim texture space - on 

Reduce texture pages - off 

Max photon bounces – 16 

 
Operation Test 1 Test 2 Test 3 Test 4 Test 5 Test6 

       

Num Photons 100,000 1,000,000 1,000,000 2,000,000 2,0000,000 2,000,000 

Lightmap resolution 0.05m 0.025m 0.025m 0.01m 0.1m 0.5m 

Multisamples per direct light 20 50 50 200 200 200 

Number Indirect lights 100 1,000 5,000 10,000 10,000 10,000 

Total texels 685,682 1,892,375 1,892,375 7,317,169 327,842 158,387 

Total Tex sample points 569,454 1,392,430 1,392,430 5,987,230 299,660 157,030 

Total Light sample points 200 1,250 5,250 11,000 11,000 11,000 

       

Total process time 2m 8.5s 19m 26.7s 1h 18m 57s 10h 40m 18s 40m 5s 24m 43s 

Prepare Geometry 17s 17s 17s 17s 17s 17s 

Create Smoothgroups 722ms 722ms 729ms 725ms 722ms 723ms 

Create Lightmaps 4.9s 4.9s 4.9s 5.15s 4.9s 4.9s 

Build Photon Map 2.8s 20.66s 20.71s 41.7s 41.8s 41.25s 

Balance kd-tree 152ms 1.73s 1.72s 3.56s 3.58s 3.59s 

Create indirect lights 104ms 1.16s 1.15s 2.13s 2.12s 2.17s 

Build Polygon BSPs 11.3s 11.3s 11.3s 11.3s 11.3s 11.3s 

Light World  

(& Calc Sample Points) 

1m 48.3s 18m 46.4s 1h 18m 17s 10h 39m 15s 39m 3s 23m 40s 

Pack Lightmap textures 78ms 522ms 523ms 714ms 31ms 13ms 

 

The images have been ordered in a snaking pattern so they may be compared to neighbors of similar 

configuration. 

   1 → 2 

    ↓ 

Order of images:   4 ← 3 

↓ 

5 → 6 
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Camera position 1 

1  2  

4  3  

5  6  

Camera position 2 

1  2  

4  3  

5  6  
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Camera position 3 
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4  
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Camera position 4 
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