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Abstract 
 
The quest for realistic computer generated images continues.  An exciting area of 
which is real-time rendering.  Images need indirect light, soft shadows and color 
bleeding in order to exhibit realistic global illumination qualities.  Achieving real time 
frame rates requires compromise as high quality methods such as view dependent ray 
tracing may consume hours instead of the milliseconds available.  Today’s 
applications must run on today’s computers, the majority of which are still using last 
years hardware at best.  Light-mapping or precomputed light and shadow textures are 
a well known technique, used in computer and video games, to enhance the realism of 
statically lit scenes at very low run-time cost. 

This paper presents a new lighting technique capable of rendering diffuse 
global illumination for static scenes of high complexity built from arbitrary polygonal 
meshes.  It draws from existing methods such as ray tracing, photon mapping and 
radiosity to produce worthwhile results with a controllable precomputation cost.  The 
precomputation phase and the final real-time render phase are designed to run on 
systems with limited memory, and do not require any specific CPU and GPU features 
beyond floating point calculation and texture mapping. 
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1 Introduction 
 
This paper presents a new lighting technique that draws on methods and tools used in 
ray tracing, photon mapping (Jensen 1996) and radiosity (Goral et al. 1984).  The 
lighting result that is produced approximates diffuse global illumination.  The 
technique works by using a photon map to locate and sample concentrations of light 
energy that have collected in the scene.  These samples are converted into a set of 
virtual lights that are rendered along with direct lights, in a view independent manner, 
via ray tracing, onto texture maps covering the scene surfaces.  This technique is 
largely independent of scene complexity and is highly scalable in that the sampling 
quality and time are directly related to configuration settings that may be dramatically 
altered while allowing the result to remain representative of the lighting solution.  
Implementation details and related issues are also presented.  Appendix A shows 
sample output from this technique. 
 
This technique has some parallels with Instant Radiosity (Keller 1997) in that indirect 
light may be accurately simulated by creating more direct light sources.  It also has 
ties to traditional radiosity that implies that every surface acts a secondary light source 
during a simulation phase in which energy is distributed throughout the scene. 
 
No special pre-processing is required for the geometry.  The implementation works on 
triangle soups, however structures such as BSP (Binary Space Partition) and Octrees 
are essential for accelerating ray tracing and ensuring efficient operation of the 
process. The scene does not need to be tessellated into a grid as many Radiosity 
techniques require.  If the surfaces are processed in turn, very little memory is 
required for the whole process, as buffers may be shared and the results stored along 
the way.  Only the scene geometry and various acceleration structures need be stored.  
The photon map and surface sample points need not persist throughout the process. 
 

2 How does it work? 
 
In this lighting solution, direct lights represent the first bounce of light reflecting off a 
surface, and the indirect lights represent the final bounce.  The photon map becomes a 
tool to statistically simulate and sample energy distributed in a scene.  The balanced 
kd-tree is a tool; to not only accelerate manipulation of the photon map, but sample 
energy concentrations in the scene in an efficient and well-distributed manner. 
 
Once a set of direct and indirect lights are created from the scene description and the 
indirect light sampling process, the lights are applied by illuminating the texels of the 
lightmaps covering the scene surfaces.  Various acceleration techniques are utilized to 
reduce the number of light samples and speed the ray testing method used to 
determine visibility. 
 
These are the basic steps of the lighting process: 

1) Generate global photon map.  Not too many photons are required, a few 
hundred thousand to a few million should be adequate for NumPhotons. 
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2) Decide on the NumIndirectLights number of indirect lights. Several hundred, 
to a few thousand will produce a good result.  The number of photon samples 
will be approximately NumSamples = NumPhotons / NumIndirectLights. 

3) Use a balanced kd-tree (3d tree) to store the photons.  Traverse this tree, 
sampling the first NumIndirectLights photons. 

4) Use the photon position and surface normal to sample the nearest NumSamples 
photons that have similar surface normals. 

5) Add all the photon energy for each of these indirect lights together, and create 
a new direct light. 

6) Process these indirect lights together with the original direct lights, but treat 
them as (radiosity style) surface emitters.  Bias the source area to compensate 
for light source bright spots, as these surface lights are approximated by point 
sources. 

7) Process the direct lights using multi sampling so they have an area effect with 
soft shadow edges. Tens to a few hundred samples will look nice. 

 

3 Why does it work? 
 
This lighting technique borrows concepts and methods from several existing 
techniques.  This section describes the details of how particular methods have been 
used or modified to help this technique produce the desired results. 
 
The photon map construction is fairly standard, but the Russian roulette (Arvo James 
et al. 1990) rules are modified slightly.  The photon map stores energy to emit the 
final bounce, not visualize on the surface before being seen by the eye.  Because of 
this, stored diffuse photons must have the surface color applied otherwise they will 
reflect the incident light color instead of the reflected light color when emitted.  In 
addition, if specular light is to be approximated (and it can be in a very dodgy 
manner), the specular light samples must be stored at every bounce otherwise the 
specular effect will be effectively lost. 
 
The kd-tree is a three dimensional, axis aligned BSP tree.  When balanced, it 
partitions space in a way that is consistent with the distribution of photon locations.  
Note that using the kd-tree in this way has been used by Per Christensen (Christensen 
2001) to accelerate final gathering in photon map enhanced ray tracers by pre-
computing irradiance.  The sample positions in the kd-tree are safe since a photon is 
stored at a surface there.  Light energy is conserved by accumulating energy from 
emitted photons and distributing it to virtual lights for emittance.  Refer to figure 1 to 
see how one thousand indirect lights were created from one million photons in a 
photon map.  Notice there is a higher density of indirect light sources in areas where 
light is being reflected. 
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Fig. 1: Indirect lights sampled from the top levels of the kd-tree. This image shows one thousand lights 
from a one million-photon map.  A higher density of (indirect) light sources is visible in areas where 
light is being reflected.  The three almost solid clusters are actually inside lamp covers.  The other two 
lights were not covered.  Although hard to tell from this angle, many of the new light sources in darker 
areas are actually located on the ceiling. 
 
When these virtual indirect lights are created, like traditional direct lights, they emit 
from an infinitely small point.  This can lead to bright spot artifacts at surfaces very 
close to the light source.  It may be thought that a solution would be to spread the 
light out on a surface, or across multiple samples, but this would defeat much of the 
benefit obtained by this technique.  Besides, an alarming number of indirect lights 
(perhaps a thousand or so) are already used to render this light, so the number of 
lights should be minimized.  It turns out that by biasing the source emitter area in the 
lighting equation, the bright spot artifact that would otherwise appear can be 
effectively eliminated.  Refer to figure 2 for original and corrected results.  Further 
work needs to be done to explain exactly what the optimal bias number is, but simple 
experimentation produces a good value very quickly.  If the bias is too small, the 
bright spots are evident, if it is too large, the light result is darkened, but at the 
moment where the spot artifacts disappear and the light begins to noticeably darken, 
the optimal bias is found.  This bias factor is consistent and appears to relate only to 
the size (and shape) of the energy sample, but nothing else.  A value of 10 was found 
to be suitable for lights sampled with a sphere and 30 to be suitable if sampled with a 
cube.  It might appear that the difference could be pi and that 10pi or such would be 
more precise, but that is not correct.  It must also be noted that the sphere and cube 
samples are only approximations.  Smaller and more numerous samples approach an 
accurate result.  Although the sample shape is a sphere or cube, the photons lie on the 
scene surfaces such that a spherical sample flattens to a disc and cube sample to a 
polygon.  The size of the sample volume and the scene geometry contribute to the 
accuracy (or lack of) in this phase. 
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Fig. 2: Light source is above the white table.  Left: Bright spot artifacts caused by 
point light sources on nearby surfaces.  Right: Bright spot artifacts removed by 
biasing the source area in the lighting equation. 
 

4 Limitations 
 
Several limitations exist relating to this lighting technique.  There are performance 
and quality considerations, and the lighting result is not a complete lighting solution, 
as it does not simulate all the ways light interacts with the scene and viewer. 
 
The inner loop of this lighting technique requires an occlusion test, and that is 
traditionally the slowest part of a ray tracer.  Even a hardware implementation would 
require extra rendering and reads from a stencil buffer or shadow buffer. 
 
Better results are produced using higher resolution output texels, and more indirect 
lights.  This means the process may need to run for minutes to hours to produce 
results of a desirable quality.  A standard ray tracer should produce higher quality 
view dependant results much faster. 
 
Caustics and Specular light effects are not produced by this technique, or at least not 
visualized correctly.  Note that the photon map could produce caustics by simulating 
photons interacting with reflective surfaces and participating media, though the results 
would not be good since very few photons are used and the implementation does not 
visualize the photon map directly.  This is actually a serious drawback in scenes with 
lots of reflective surfaces.  For example, if a light was close to a mirror, the reflected 
light is not visible.  It is however distributed correctly for other diffuse representation.  
A dodgy compromise has been implemented that stores photons on reflective 
surfaces, so they can be emitted from that surface and create some light even though 
the light is emitted diffusely, thus losing the directional focus that characterizes 
specular light.  Note that this technique was never intended to simulate specular light.  
The specular light is best rendered in real time since it is largely view dependant.  The 
specular style light that is missed is caustics, that is, highly directional indirect light 
seen on diffuse surfaces.  The earlier example, of a light, close to a mirror reflecting a 
bright spot on a nearby surface, is familiar in the architectural scenes tested.  Caustics 
are commonly noticed as the striking light patterns, seen dancing near swimming 
pools and water, caused by reflection and refraction. 
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A low quality lighting result may show artifacts relating to the number and separation 
of lights in the scene.  The result looks a bit like an object lit by football stadium 
lights, with a small number of distinct and separated shadows rather than one soft 
shadow.  Figure 3 shows an example of this. 
 

 
Fig 3:  Too few indirect lights cause light and shadow banding. 
 
Appendix A describes early attempts that led to the development of the lighting 
technique presented in this paper. 
 

5 The Entire Process 
 
This section overviews the entire process from importing the scene to preparing 
output.  Several significant parts of the process are expanded as pseudo code.  Future 
sections will describe particular parts of the processes in depth. 
 
Import geometry and lights 

Scene Geometry and lights are added from an external file or directly in code, 
via an interface class.  Mesh consolidation is performed with shared or near-
identical polygon vertices are merged and degenerate triangles are removed. 

Initialize Direct lights from input lights 
Direct lights are initialised from original light sources.  Surface lights are 
subdivided into multiple patches.  Omni lights and spot lights will be mutli-
sampled later. 

Build acceleration structures from mesh geometry 
Polygon BSP trees are constructed for each polygon mesh object. 

Transform local space geometry into global space 
World space polygon representations are constructed for every surface in the 
scene. 

Calculate bounding volumes for mesh objects 
Various bounds and extra information is collected or calculated for each mesh 
object. 

Create acceleration structures from mesh objects 
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Scene and/or region BSP trees are constructed to store mesh obj7ect 
references.  Visibility tables may also be calculated here. 

Create smoothing groups from mesh object polygons 
Smoothing groups are created from polygons that share edges with near-
identical positions and normals. 

Create lightmaps from smoothing groups 
Lightmap sample structures are created from sets of polygons in smoothing 
groups. 

Build Photon Map  * 
Photon map is created by simulating light reflected and absorbed within the 
scene. 

Create Indirect Lights  * 
Photon map is sampled to create more lights, where energy is reflected in the 
scene. 

Free Photon Map 
Photon map is no longer required and its resources may be released. 

Light the world  * 
All lights, Direct and so-called Indirect are sampled to light the lightmaps.  
Visibility is determined via ray testing. 

Pack lightmaps 
Related lightmap rectangles are packed together into larger texture pages. 

Finalize lightmap texture coordinates 
Polygon vertices are adjusted with final lightmap texture u,v coordinates. 

Output lightmap textures 
Lightmap texture pages are written to disk. 

Geometry is ready for export 
Data structures are ready to export or further consolidation. 

 
*  Expanded description of this part of the process follows. 
 
Specific parts of the process in more detail. 
  
Build Photon Map 
 Create photon emitters from Direct Lights 
 Calculate total light power for scene 
 While photon map no full 
  For each light 
   If light probability to emit is ready 
    Emit photon 
    While photon not absorbed or lost 
     Trace photon 
  If all photons have been lost for several passes  

Exit now to prevent endless loop (scene is misconfigured) 
 For all photons in photon map 
  Adjust power by: total power / number of lights 
 
Create Indirect Lights 
 For number of desired indirect lights 
  Sample photon map 
  Create indirect light and add to direct light set 



 9 

 
Light the world 
 For all lightmaps 
  Prepare shared memory 
  Calculate sample points for texels 
  For all lights 
   Find objects that potentially occlude 
   Sample single lightmap with single light: 
   For every lightmap sample point and every light sample point 
    Calculate lighting equation 
    Ray test visibility 
    Add result to lightmap sample color 
  Apply exposure correction 
  Apply multi-sample filtering 
  Fill RGB output from texel samples. 
  Release shared memory 
 

6 Parts of the process 
 

6.1 Smoothing group creation 
 
A smoothing group is a collection of polygons that appear smooth because they share 
edges, with vertices having both the same position and normal.  Smoothing groups are 
usually specified by the artist using an application to construct the scene meshes.  
Sometimes mesh exporting programs consolidate the mesh polygons and calculate 
smoothing information.  In order to maximise flexibility, the implementation 
consolidates the mesh by merging shared vertices and creates smoothing groups by 
merging shared edges.  Detecting and merging shared vertices and edges can be a 
time consuming operation if implemented in a brute force manner.  Once polygon and 
vertex counts reach the tens of thousands, algorithms that are more efficient must be 
employed. 
 
This implementation uses a dynamic kd-tree to accelerate neighbor queries to detect 
shared vertices and edges.  As edges are described as indices into vertex pools, the 
edges are two dimensional integer pairs that are easily inserted and queried via the kd-
tree.  Refer to Appendix B for a description of balanced and dynamic kd-trees.  Other 
possible structures such as hash tables, modified for multi dimensional range queries, 
and r-trees, may be suitable for similar data manipulation.  Such other structures 
however, are often complex to implement and have significant per-node memory 
overhead.  Performing mesh consolidation, smoothing group and lightmap creation 
allows the implementation to easily handle polygon soups from any source, with 
excellent performance. 
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6.2 Lightmap structure creation 
 
A lightmap in this implementation is a rectangle of samples that will eventually be 
output as a rectangle of texture.  The lightmap structure stores a list of the polygons 
that form a surface as part of the larger scene.  A parameterization is also stored to 
accommodate conversion between texture space and world space. 
 
Currently, polygons are grouped to form a lightmap as follows:  A seed polygon is 
selected from the remaining polygons in a smoothing group belonging to a mesh 
object.  The polygon group is grown outward from the seed polygon as long as 
various criteria are met.  The potential polygons are already being selected from the 
same smooth group, so for a simple world-axis oriented planar projection, the face 
normals are compared for similarity.  The signed dominant axis of the face normal 
determines whether the polygon can be added to the lightmap’s polygon group or not.  
Other polygon attributes such as lightmap texture resolution must also be identical, to 
be a part of the polygon group.  As the lightmap represents a single texture, uniquely 
covering the lightmap’s polygons, care must be taken to prevent polygons from 
overlapping.  A polygon strip that looks like a ribbon with ends crossed, or like the 
twisted surface of ice-cream from a ice-cream machine, will contain overlapping 
polygons that would otherwise be grouped together.  Overlapping polygons are 
rejected by a two dimensional separating axis test, and will form part of some other 
lightmap. 
 
Lightmaps are bounded by a world-axis aligned grid, rounded outward to the nearest 
grid position, plus one or more border grid units.  These extra border units relate to 
the extra texels, added to help with texture seams, filtering and mip mapping issues 
discussed elsewhere.  Figure 4 shows an example lightmap diagram. 
 

 
Fig. 4: Diagram of a lightmap.  Wx,y,z represent world axes.  Tu,v are the texture axes.  
Note the lightmap is at least one whole grid unit larger than the contained geometry in 
each direction.  The grid represents texels in a texture.  At least one extra texel around 
the geometry is sampled for use by bilinear interpolation. 
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Sample points representing texels or sub-texels are calculated across the face of the 
lightmap.  The sample points usual lie in the center of the texels, but may be in other 
locations for antialiasing.  Earlier implementations calculated the sample points for all 
lightmaps as a phase before lighting.  The current implementation delays sample point 
creation for each lightmap, until they are required for use in lighting.  The sample 
points are dumped as soon as they have been made use of.  Doing this greatly reduces 
memory usage as each sample point is a full float vector3 position, normal, color and 
some flags. 
 

6.3 Photon Map 
 
The photon map, as described earlier, is a tool used by this technique to simulate, 
store and sample light energy in a static scene.  Figure 5 shows photons stored in the 
photon map, rendered in the scene at their positions. 
 

 
Fig 5: Photons in a photon map. Left:  The light source is positioned above floating 
table.  The table has some alpha transparent texels.  Notice how the shadow varies in 
density under the spheres. Right:  Kitchen and Lounge with ceiling light and lamp 
illuminating scene. 
 

6.3.1 Photon storage 
As hundreds of thousands to millions of photons may be stored in memory, the 
photon structure size must be minimized.  The implementation uses the compression 
methods described by Jensen, originally developed by Greg Ward.  The photon power 
or flux is stored in a 4byte RGBE, Red, Green, Blue, Exponent form.  It is 
compressed and decompressed as required.  The incident direction and/or surface 
normal of the photon are stored as two byte-size signed integers representing angles 
quantized with a resolution of less than 1.5 degrees.  The photon position remains a 
full 12 byte float vector3 because it is accessed very frequently.  The whole structure 
is about 20 bytes.  Slightly more if extra components are required, or padding is added 
for memory address alignment.  As the photon map is only used to create indirect 
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light sources, it can be constructed, used, and thrown away, so its memory usage is 
not as critical as it could otherwise be. 
 
During kd-tree balancing, photon elements are sorted in place so no extra memory is 
required.  Photons are allocated in blocks in a growing structure that behaves like an 
array. 
 

6.3.2 Photon emitting and reflecting 
It is difficult to precisely control how many photons will be emitted and stored.  If one 
was to set a exact number of photons to be emitted, some may be lost entirely due to 
gaps in the scene mesh, others may be stored multiple times due to the diffuse 
reflectance model.  The quality of the photon map and the amount of memory used is 
determined by the number of photons stored, so controlling this is important.  The 
photon map is intended to statistically represent the density of energy distributed 
throughout the scene.  Lights of different intensity need to contribute their relative 
share of photons to the photon map. 
 
The photon emitting process continues until at least n photons are stored in the photon 
map.  If a scene contained gaps or if lights were facing away from a non-enclosed 
scene, many or all of the photons may be lost.  Such a configuration must be detected 
to prevent endless looping.  Each light emitter is given a firing threshold and has an 
accumulator that increments each time the opportunity to fire passes.  In this way, 
lights are repeatedly cycled and given the occasion to fire a photon until the photon 
map is full.  The photon map will thus contain no less, and often slightly more 
photons than requested. 
 
Photons are emitted from light sources in proportion to their contribution of energy 
relative to the combined energy of all lights.  Photons are emitted in a quasi-random 
manner.  Each light type has an emittance function appropriate for its form.  Point, 
Spot and Surface lights are supported.  Point lights are actually spheres and photons 
are spawned from random points on the surface of the sphere.  Spot lights use a 
random cosine distribution, oriented in the light’s direction, and scaled by the lights 
outer-arc. Note that when the direct light is calculated for a spot light, it uses inner 
and outer arc values for greater control, similar to the OpenGL and DirectX APIs and 
familiar to real-time 3D artists.  Surface lights spawn photons from random locations 
across a polygon surface that has been tessellated into triangles, and weighted 
according to the relative area of the triangle to the whole surface. 
 
Photons are all emitted with the same power, but as they are reflected, their power 
may vary and filtering may occur.  If a photon mapping solution were to consider 
participating media such as translucent prisms, it may be desirable to store separate 
red, green and blue photon maps.  If other aspects of a complete realistic lighting 
model were to be simulated, separate photon maps would be required to maintain 
efficiency.  A photon map just for caustics is often used in commercial renderers.  
These caustic photon maps store a large number of photons and need to be directed at 
specular surfaces and are only constructed for portions of the scene actually visible to 
the (synthetic) camera.  This is because caustic photon maps are visualized directly 
and must produce well defined output.  The global photon map used by this process is 
not visualized directly so it’s implementation and usage is relatively simple. 
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6.3.3 Photon sampling 
 
To make use of a photon map, the photons stored in it must be sampled.  A density 
estimate can be made by either sampling with a fixed size, or a fixed photon count.  
Both methods produce identical results when comparably configured.  Using a fixed 
sample size for direct photon map visualization does not usually produce as good 
results as a fixed photon count because the fixed photon count adapts its search size to 
provide a better density estimate.  Finding the nearest n photons efficiently can be 
challenging.  Most methods work by taking a smaller fixed size sample and resizing 
up if the sample contained too few photons.  Performing multiple samples in order to 
find enough photons wastes time and needs to be minimized.  When photons are 
located, they are kept in a priority queue so a farther photon may be exchanged with a 
nearer one efficiently.  This implementation uses a binary heap as a priority queue.  
Most operations on a binary heap call a Heapify function (not described here) that 
rearranges the structure to preserve the heap property. 
 
The automatic sampling method used by this implementation proves to be efficient, 
resampling in some scenes well less than 1% of the time when tested to directly 
visualize the photon map.  The initial Min sample sizes (ie. Sphere radius or box 
extents) is almost arbitrary due to the algorithms rapid estimate correction.  Min 
should be set to a small number above zero, and Max should be set to a reasonable 
limit relative to the scene size (for example, two to five meters for a real size house.) 
 
This is the basic algorithm for automatic sample sizing: 
 
Sample photons with current size estimate 
If collected photons < desired limit 

Adjust radius based on area density estimate 
(Eg. If 25% less photons were found than desired, increase the sample area by 
~25% by adjusting the search radius.) 
If radius > maxRadius 
 Accep the sample and continue 
Else 

Loop back and sample again 
Else (If collected photons = desired limit) 

Set radius to furthest photon dist + 10% or so for conservative overestimate. 
Don't loop back, but record and use the adjusted size next time. 

 
Note that the number of photons sampled will never exceed the desired limit because 
the nearest n samples are collected, and the search will terminate as soon as that limit 
is reached. 
 
The shape of the photon map sample may be a sphere or a cube.  Results from either 
are visually similar.  Performance of the cube sampler may be slightly better, and may 
produce better results.  The cube sample shape was chosen based on the logic that 
since the top levels of the kd-tree are used to create indirect lights, a cube sample 
would be more compatible and accurate with the axis aligned subdivided space of the 
kd-tree. 
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6.3.4 Kd-tree sampling optimizations 
 
The kd-tree is used to accelerate queries on the photon map as well as locate well-
distributed indirect light concentrations.  Here are some optimizations used by the kd-
tree traversal function to sample photons in the photon map: 

·  Sqrt() is avoided.  The squared radius is maintained instead, and vector 
components (eg. Extents[axis]) are used where possible.  With a sphere shaped 
sample, the sign check is performed on the axis distance, as the squared radius 
is always positive. 

·  Iteration is used instead of Recursion where possible.  When sub trees are 
skipped, the code sets new Start and End range within the tree and just re-
iterates instead of re-calls. 

·  The code is reordered such that the test on the current node can be skipped 
entirely if the current node is known to be located too far from the test 
position. 

·  Ordering the priority queue is delayed until it is full.  The caller checks if the 
queue is ordered or not.  If the queue hasn't been ordered yet, the caller makes 
a single pass through the unordered queue to find the maximum and sets this 
as the first element.  An alternative would be to call heapify once, if this had 
not occurred thus far. 

·  When photons are popped off the resulting queue, they are not actually 
removed.  Doing so would cause the queue to heapify on each removal.  
Instead, the queue is treated as an array again, and elements are processed in 
that order.  The first element is still the least cost (farthest to sample location) 
as expected. 

 

6.4 Original Direct Lights 
 
The focus of this paper is on indirect diffuse light, but the direct diffuse light is 
usually a significant contributor to a final lighting solution.  Direct lights are handled 
in a fairly standard manner.  The contribution from each light is calculated per pixel 
(texture sample) and added to the lightmap.  The lights are multi sampled in order to 
achieve softer shadows and lighting.  Lights that would otherwise be point sources 
become surfaces.  Recall that ‘soft shadows are a consequence of partial visibility of 
an extended light source’ (Hasenfratz  et al. 2003).  Spot light samples start at a 
section on the surface of a sphere.  Surface lights may be used as an additional light 
type and are simulated like this: All polygons that describe the emitting surface are 
made into patches.  These patches are recursively subdivided by splitting them with 
axis aligned planes until they reach a configured size threshold.  The surface light 
patches then become smaller spot lights.  They actually use a surface-to-surface 
radiosity style lighting equation rather than that of a point or spot light. 
 
Point lights and spot lights are multi sampled by generating points on the surface of a 
sphere the size of the light.  These points may be generated uniformly, randomly, 
uniform with jittering, or with a similar method.  The larger the light sphere is, the 
more samples are required to make the shadows appear smooth.  The output texture 
resolution may also influence the lighting result, as lighting artifacts may be more 
visible on higher resolution output.  Lower resolution output has the effect of blurring 
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light samples together reducing the light sample aliasing.  A quick preview with soft 
shadows may require 25 samples per light, but for high resolution, final quality, 150 
to 300 samples may be required for smaller and larger lights respectively.  Figure 6 
shows soft shadows cast by a spot light. 
 

 
Fig. 6: A soft shadow cast from a (direct) spot light.  The light source is positioned 
above the floating table.  Notice the shadow penumbra appears wider at different 
locations, particularly further from the light source. 
 

6.5 Ray tracing 
 
When ray tracing is referred to in this paper, it is not about the traditional method of 
tracing a ray through a screen pixel to the scene objects, with shadow ray tests back to 
light sources.  Instead, it is simply referring to testing line segments for point-to-point 
visibility, or first hit results.  Although rays are frequently referred to, infinite rays are 
almost never used.  Line segments that represent limited logical rays are used instead.  
Line segments limit the test scope to the scene size, or smaller local space.  
Additionally, precomputation can accelerate some calculations involving line 
segments. 
 
Implementing ray tracing techniques in code in a brute force manner is relatively 
simple, though completely impractical.  Acceleration methods and structures are thus 
essential for feasible operation.  Such methods attempt to minimize the number of 
objects and polygons considered for testing.  Structures are used to group objects, 
divide space, or store relationships so that tests, limited to specific locations in the 
scene, may be performed efficiently. 
 

6.5.1 Potential Test Objects 
A scene is usually a collection of many objects.  These objects may be referenced by, 
or stored in high level entities such as regions, rooms or cells.  The objects in this 
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implementation are effectively polygon soups and may contain up to 65 thousand 
individual polygons each.  Although objects may be a polygon soups, connected 
surfaces and non-intersecting geometry produce efficient output with fewer artefacts. 
 
In order to reduce the number of tests performed, only the regions, objects and 
polygons potentially intersecting the test are considered.  To cull whole regions, 
various high level structures, or look up tables derived from them, may be used.  To 
reduce the number of objects tested, an axis-orthogonal, shallow BSP tree is used to 
store object references.  The object’s bounding box is used to classify the object 
within this structure.  As the scene or region size is known, a BSP is created to a fixed 
depth, simply partitioning the region into a set of equal size voxels.  Objects are 
inserted into this structure, as if dropped in the top, and fall through to be stored in the 
leaves.  A single object may be referenced multiple times within the tree.  This BSP 
could have been constructed in a number of different ways, and other structures could 
have alternatively been used.  This particular structure is simple to implement and 
provides excellent query performance.  As described later, a convex hull is 
constructed that bounds all paths between a light source and surface.  This hull is 
tested with the BSP to produce a reduced set of objects to ray-test. 
 
A single mesh object may be stored in up to two BSPs, one for opaque polygons, the 
other for transparent or translucent polygons.  The opaque set is always tested first as 
it is more efficient to do so, and if a hit occurs for an occlusion test, occlusion is 
guaranteed, even if other translucent objects would also have intersected.  

6.5.2 Polygon BSP 
The purpose of the polygon BSP is to reduce the number of line-segment versus 
polygon tests.  These tests are used to determine point to point visibility between a 
light and a receiving surface.  Approximately 50% of CPU time is spent performing 
this function. 
 
The top levels of the BSP are split by axis-orthogonal planes, dividing the mesh space 
into voxels.  A voxel is a volume element, but in this description, it is simply a three 
dimensional axis aligned box.  The remaining nodes are split by the planes of 
polygons from the mesh.  Polygons may be stored on any level below the voxel 
subdivision, not just in the leaves.  A similar BSP structure is described by Jim Arvo 
in his paper “Linear-Time Voxel Walking for Octrees”. (Arvo 1988).  Refer to figure 
7 for a visualization of the axis-orthogonal portion of the BSP tree.  This type of tree 
can be constructed quickly, and traversal proves to be faster than other related tree 
structures.  Polygon descriptions are stored in the tree.  The polygons are stored as 
triangles in the final implementation, but n-gons would be efficient for meshes mostly 
comprised of flat quads.  Polygons are stored as two-dimensional edge planes, and a 
three-dimensional face plane, for fast point in polygon and line segment testing. 
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Fig. 7: BSP generated from coffee machine model.  Only the top-level axis aligned 
(voxel style) portion of the BSP is shown.  Further down the tree, the mesh polygons 
are used to create hyperplanes. 
 
Here is the pseudo code for BSP construction 
 
Function Initialize 

Add all polygons to a single node. 
Find the axis aligned bounding box of the node. 
Call Function SplitByAxis 

 
Function SplitByAxis 

boxDelta  = boxMax - boxMin  
axisSet = boxDelta component indices sorted from large to small. 
If current tree depth < depthLimit  
AND number of polys in node > min polys in node 

For index 0 to 3 
Use the next axis index from axisSet and make a splitting  

plane and bounding boxes for each side 
Split the node polygons into two groups by testing  

with box bounds, not just the split plane 
 numSpanned = numFront + numBack - numOriginal 
 fraction = numSpanned / numOriginal 
 If fraction > fractionThreshold (30% works well) 
  Don’t accept this split and continue 
 Else 
  Accept this split and break 
If none of the 3 axes were accepted 
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Call function SplitByPolyPlane 
Create two new nodes 
Put polygon groups into the two new nodes 
Remove contents from original node 
Call function SplitByAxis 

Else 
 Call function SplitByPolyPlane 

 
Function SplitByPolyPlane 

Find best (least cost) split plane from poly set 
Split poly set using plane and reasonable size epsilon 
For each of the two potential children 
 If num polys on this side of plane > 0 
  Create child node 
  Fill node with polys 
  Call function SplitByPolyPlane 

 
The function to find the best polygon splitting plane proved to be very difficult to 
make worthwhile.  Obvious choices are to find a plane that minimizes splitting, or 
creates better balancing.  None of these choices or combinations consistently helps 
performance, though they can dramatically affect tree size or tree depth.  Creating an 
optimal BSP for traversal speed is very difficult.  Not only could early, apparently 
good split choices prove to be bad later during construction, but the cost of traversing 
the tree changes at different points.  For example, the first few levels of the tree cull 
large areas of the test space, but later levels may cost more than just testing the node 
contents.  In addition, the configuration of polygon geometry and rays may create 
inefficient situations.  For example, if a flat rectangular surface was tessellated into 
many triangles for some reason, it may be better that all the polygons be placed in one 
node, rather than divide the polygons into more nodes.  If the node is rejected early in 
the test, then many polygons are culled at once.  However, if the node was 
consistently encountered, early on, many polygons may be tested for no effect.  In the 
latter case, it would have been better to split the node contents into more nodes.  The 
fact that tree levels closer to the root are like voxels (forcing the mesh to be divided 
efficiently into chunks early on) greatly eases the responsibility for later levels to be 
optimal. 
 
Traversal of the BSP tree is fairly standard.  A better understanding of BSP traversal 
and some optimisations were learned from Havran et al. (Havran et al. 1998). A few 
optimizations are worth noting: 

·  Nodes that have axis aligned planes are handled specially.  Distance to axis-
plane tests are performed without the dot product.  When the test line segment 
is split, the mid point calculation is different for axis and arbitrary planes.  
Reciprocal absolute line segment components are pre-calculated to eliminate a 
divide in that case. 

·  The function calls itself recursively rather than using an explicit stack.  This 
proves to be faster on Intel based PCs but should not be considered optimal for 
all machines. 

·  The traversal uses iteration if possible and only recursion when necessary.  If 
the line segment is not split and no new variables are required, the function 



 19 

can repeat using a loop, merely swapping local values such as current node or 
test segment end points. 

·  Test information is stored in a structure and passed as one parameter, 
minimizing the number of parameters pushed for each function call. 

·  If the line segment is entirely on either side of the plane, it is passed in its 
entirety to the next test.  This prevents the mid point from drifting outside the 
original line segment and compromising stability. 

·  Most traversal performance is gained from skipping sub trees beyond the 
range of the search, and by trimming the test line segment whenever it 
intersects a plane.  This is standard behaviour for a BSP traversal routine. 

 
Here are some other traversal optimizations that were tried, but proved inefficient: 

·  Instead of passing the line segment test as two end points, and calculating the 
mid point if split, pass the line segment as Min and Max normalized times.  
This sounds like a good idea because it removes the midpoint calculation, but 
instead, there is a higher cost for non-axis aligned planes.  If the tree only held 
axis aligned planes, this may be the preferred method. 

·  A large number of configurations and reordering of code were tried including:  
Unrolling, using indices instead of conditions, minimizing code at the expense 
of increased recursion, front to back traversal of the line segment, careful and 
unchecked mid point calculation. 

 
When a node containing polygons is intersected, all the polygons at that node are 
tested with the line segment.  This test will terminate early if any of the polygons are 
hit.  The mid-point calculated by the node plane is not useful here because the 
polygons stored in the node do not lie precisely on the node plane.  They lie, at any 
orientation, within an epsilon distance of the node plane. 
 

6.5.3 BSP Epsilons 
Epsilons are relatively small numerical values used to control an error margin.  
Epsilons are most commonly used to preserve stability, particularly when working 
with floating point numbers where precision is limited and slides up and down the 
number range.  The BSP code makes extensive use of two epsilon values, with a 
couple more for less critical use.  Here is a list of the epsilons used: 
Major: 

·  Polygons are classified during tree construction as being in front, behind, on or 
spanning a hyper plane.  This classification routine uses a construction 
epsilon.  This epsilon is critical for a) stability of the construction phase, b) 
number of nodes generated for the tree.  This epsilon causes the hyperplanes to 
have a thickness, otherwise they would be infinitely thin. 

·  During tree traversal, the current line segment (or test shape) is classified as in 
front, behind, or spanning the current node’s hyperplane.  A test epsilon is 
used here.  This epsilon must be larger than the construction epsilon as it has 
to accommodate for the thick planes use during the construction phase and any 
error that may be introduced by traversal calculations. 

Minor: 
·  Axis splits cause polygons to be classified against two bounding boxes.  Any 

polygon that is at least partially in a box is classified as intersecting, and is 
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stored in the node represented by that box.  The classification function uses a 
tiny epsilon for working with floating point values. 

·  Polygons are described as if their edges form a set of planes.  The planes are 
pushed outward by a tiny margin to overcome floating point error and fill any 
tiny gaps that may unintentionally exist. 

 
Both the major epsilons described above are of critical importance to the efficiency of 
the BSP.  Understanding the role played by these epsilons allows them to be tweaked 
to provide a significant performance increase.  Here are some extreme examples:  If 
the construction epsilon size is larger than the entire mesh, the whole mesh will fit 
into a single node and every single polygon will be tested with each traversal.  On the 
other extreme, if the epsilon is almost zero, polygons will split others in the set, into a 
huge number of tiny fragments, repeatedly trimming tiny slivers off each other, as 
they reach the limits of floating point precision.  This is particularly observed when 
working with arbitrary polygon soups.  With tiny epsilons, care must be taken because 
a polygon may try to split itself, as its own points may not lie close enough to its own 
plane, as often occurs with greater than three sided polygons.  Correctly sized epsilons 
prevent both these extremes from occurring. 
 
Note that the epsilon values relate to a) the units of measure and dimensions of the 
mesh polygons, and b) the size of mesh features.  For example, a mesh that is 0.023 
units wide will have an epsilon, perhaps 1000 times smaller than a mesh that is 23.0 
units wide.  Also, if the mesh was 20 units wide, but had many features at 0.001 units, 
it may require smaller epsilons for both construction and traversal, to efficiently 
partition the mesh. 
 
6.5.3.1 Construction Epsilon 
The construction epsilon is necessary so that polygons can be classified as expected.  
Consider a cube, having six faces, with two triangles per face.  This mesh should 
produce a BSP that has six nodes that form a perfectly left or right weighted tree.  
This type of tree or sub tree represents a convex hull.  During construction, each face 
of the cube becomes a hyperplane for a node.  A node will hold the two triangles that 
form one face of the cube, however the future of the other eight triangles touching this 
plane is not as obvious.  These triangles must be classified as if they were entirely in 
front or behind, even though their points or edges are touching the plane.  So a 
polygons is classified like this: 
In front  ®   Vertices are > +epsilon. 
Behind  ®   Vertices are < -epsilon.  
On   ®  Vertices are > -epsilon and < +epsilon. 
Spanned  ®   Vertices are < -epsilon and > +epsilon. 
Notice that only the polygon vertices are considered during classification, not the 
polygon plane.  Because the plane is thick, a polygon may have any orientation and 
still be classified as on the plane. 
 
6.5.3.2 Test Epsilon 
If the BSP test epsilon is calibrated to be slightly smaller than the distance that sample 
points are offset from the surface beneath them, a beneficial effect occurs.  Recall that 
most time is spent in point to point visibility testing.  Since both start and end 
locations are not on, but in front of their respective surfaces, and the test epsilon is 
smaller, the source and destination surfaces are never tested.  Only potential occluders 
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in between are tested.  If the test epsilon were larger than the sample offset distance, 
the source and destination surfaces would always be tested even though they could 
not be occluders.  As surfaces may be highly tessellated, this configuration can 
significantly increase performance. 
 

6.6 Polygon testing 
 
If the large numbers of scene polygons represent flat convex surfaces, they may be 
stored as n-gons (greater than three sided polygons) and tested with greater efficiency.  
Care needs to be taken when mesh data contains n-gons, but not all the polygon points 
lie on the polygon plane (within a reasonable epsilon).  In this case, the polygon 
should be tessellated into triangles to ensure stability, otherwise tree construction and 
tree traversal epsilon values will require enlargement that may adversely affect 
performance. 
 
6.6.1 Ray vs. Poly 
Determining the intersection of a ray and polygon is often a two-phase operation.  
First, the ray intersects the plane of the polygon, then that intersection point is tested 
to see if it lies inside the polygon.  If no extra information such as the polygon normal 
is precomputed, the fastest ray versus triangle test is reportedly the barycentric style 
test described by Möller and Trumbore (Möller et al. 1997).  Even compared to 
methods with precomputed components this method performs well.  It has the side 
effect of also computing the barycentric coordinates useful for mapping into the 
triangle for things like texture or normal sampling.  A slightly faster method for 
computing the intersection of a line segment and a polygon, uses the distance of the 
two line segment endpoints from the plane, to calculate the normalized time of 
intersection.  This test can early-out if both distances are on one side of the plane.  
The normalized time is then used to project a point onto the plane and a point in 
polygon test is performed. 
 
All kinds of point in polygon tests exist, but one of the simplest and fastest is to walk 
around the edges of the polygon in a clockwise manner and test if the point in 
question is to the left or right.  If the point is not to the right of any edge, then it is not 
inside the polygon and the test can exit immediately.  This method works for all 
convex n-gons.  Since the point lies on the plane of the polygon, this method need not 
occur in three dimensions, as only the two dimensions other than the dominant axis of 
the face normal are required.  A similar method turns the edges into planes.  A dot 
product test determines if the point lies in front or behind the plane.  Once again, this 
test need not be performed in 3D.  So, instead of storing three points and a normal to 
describe a triangle, two axes (2 bytes) and three edges are used to describe the 
triangle.  Each edge is a 2D normal and distance (total 3 floats).  The new polygon 
description is almost the same size as the original polygon vertices version but now 
the test if a point is inside a polygon is just: 
 
if ((edge[i].x * point[ix] + edges[i].y * point[iy] ) < edges[i].d) { return false; } 

 
Repeated for each edge of the polygon. 
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As noted by Steve Worley, the only way to simplify further is if the edges were 
described as lines with the equation Cx+y=d.  The edges would need to be in 
homogenous space and horizontal and vertical lines would need to be special cased. 
 
6.6.2 Edge/Point reordering to improve point-in-poly early-out 
Both triangles and n-gons can have their edges reordered to accelerate point in poly 
testing (Green et al. 1993).  The idea is to bound the polygon with a rectangle then 
test how each edge would cut away the remaining space outside the polygon.  The 
method for n-gons and triangles is a little different, though conceptually the same.  
Imagine if the polygon was an octagon.  It would be best to test opposite edges first, 
rather than just work around the winding.  After the first four opposite sides had been 
tested, most (space) culling has occurred and an early-out likely achieved.  
Experiments with triangle edge reordering showed 0-1.5% speed increase, for the 
process using heavy point in poly testing.  As the precomputation time is low and the 
run time improvement always positive or negligible, this optimization may always be 
worth adding.  The implementation described in this paper does not use explicit 
bounding rectangles on individual triangles, but the voxel-like subdivision within the 
BSP is believed to create a similarity, causing this method to work. 
 
6.6.3 Translucent textures 
When testing polygons that have a translucent or transparent texture, care must be 
taken to prevent neighboring polygons that share and edge from being redundantly 
tested, causing extra filtering along the shared edge.  This problem can be overcome 
by recording the intersection time.  If another hit occurs on a translucent polygon at 
the exact same time, then it is most likely to be a shared edge and can be ignored 
(assuming polygons are not layered and coplanar). 
 
6.6.4 Coplanar polygons 
Polygons on the same plane with opposite normals are sometimes used to simulated 
double sided, thin objects such as plant leaves.  The back facing polygon to a ray test 
can be biased so it is not detected before the front facing polygon.  If this is not done, 
coplanar polygons may interfere when sampling normals on a surface. 
 

6.7 Lighting 
 
A simple lighting model is used by this implementation.  Direct lights use a lighting 
equation similar to that of the DirectX and OpenGL fixed function pipelines.  Surface 
lights and indirect lights use approximations of the radiosity form factor.  The 
intention is to rapidly produce a nice looking and representative, though not 
necessarily accurate lighting result.  Other more accurate lighting equations may be 
used for both direct and so called indirect lights.  The output of this implementation is 
a 24bit texture that is modulated or 2x modulated with the base diffuse texture(s).  As 
the result is a diffuse texture with shadow and light color information, specular and 
other effect lighting is added afterward for improved realism. 
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6.7.1 Approximate surface light equation 
 
Surface lights and Indirect lights both use equations that approximate the energy 
transfer between surfaces and are similar to the radiosity form factor.  Refer to figure 
8 and for a simple diagram of the lighting configuration. 
 
 

visibility
biasAreaAr

BA
´

+2

coscos
p

 

 
Eq 1: Surface and Indirect Light 
 
Visibility is determined by opaque occluders and translucent media.  It is typically 
just 0 or 1, but may be a RGB filter in the range 0-1 for each color channel. 
 
Equation 1 represents light attenuation.  The source light color and intensity is 
already taking into account the source emitter area effect.  As the lighting is 
calculated per texel, energy calculations and visibility testing are approximated by 
points and ray tests with relative areas introduced for consistency. 
 
The radiosity form factor represents the proportion of energy leaving one patch and 
received by another patch.  Figure 9 Shows a point to area form factor thats has an 
interesting geometric property.  The form factor is the area of the projection of patch 
k, projected onto a hemisphere centered at j, then projected orthogonally down onto a 
circle. 
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Fig. 8: This diagram shows the configuration of emitting and receiving patches.  In 
the described implementation, the emitter may be a Direct Surface Light, or a Virtual 
Indirect Light. 
 

 
Fig. 9: This diagram shows how surface areas influence each other, as if a patch is 
projected through a hemisphere and dropped onto a disc. 
 
Equation 1 uses an area bias to compensate for the fact that area light sources are 
simulated by point sources.  As described earlier, bright spot artifacts will appear 
close to point sources unless corrected.  Figure 10 demonstrates the numerical effect 
of the area bias in the lighting equation.  Figure 2 showed the visual effect. 
 

 
Fig. 10: The effect of the area bias.  The extreme intensity near to the light source is 
effectively clipped back with little effect elsewhere.  A bias of 1 is shown in this 
example. 
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6.8 Color Correction and Output 
 
When light sampling is complete, the color samples must be converted into a format 
suitable for rendering via texture mapping and viewing on a monitor.  The color 
samples are 32bit float per color channel, they will be converted to 8bit unsigned 
integer per color channel.  Converting number ranges in this way is often called 
quantizing. 
 
If the sample values were between zero and one, the conversion would simply be a 
matter of scaling to the new number range and losing precision.  The samples actually 
range from zero to infinity, or at least some large positive number.  Because of this 
unknown upper bound, the values must be clipped and optionally adjusted in some 
way. 
 
The human eye and brain combination is capable of recognizing millions of levels of 
brightness, from the darkness of an overcast night, to the blinding light of the sun on a 
clear day.  Computer video cards typically allow a color value between 0 and 255.  
Monitors often have an analog color range, but can only achieve the darkness of a 
blank screen and the brightness of a fully lit pixel due to the limitation of the CRT, 
LCD or other display technology being used. 
 
If two lights shone on a single surface, a very bright magenta (red, blue) and an 
extremely bright cyan (green, blue), the surface would be saturated in color across all 
components.  Since the cyan light was brighter, it would be preferable if the final 
color was not clipped to white (full bright), but showed the hue of that intense color.  
The following algorithms describe the color clipping via normalization and color 
clipping via saturation: 
 
Clip Normalize – Preserves Hue 
max = largest color component 
if max > 1.0 
 for each color component 

color = color / max 
 
Clip Saturate – Just clips components, often resulting in white 
for each color component 
 if color > 1.0 
  color = 1.0 
 
Lights vary in intensity and the human eye automatically adjusts to the lighting 
situation in a short period of time.  Photographs and images cannot capture exactly 
what the eye would see, but the controls on cameras allow adjustment to make the 
image at least look representative.  One such control is exposure (Elias 2003).  
Exposure adjustment has the effect of changing the intensity of bright and dark areas 
in the image.  Equation 2 describes the adjustment operation.  Figure 11 shows a 
comparison between the original and two settings of exposure adjustment. 
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Fig 11: Exposure adjustment.  Left set to K=0.5, Right set to K=2.0, and Middle 
original image without adjustment.  Notice the obvious hot spots in the non-adjusted 
middle image where intensity is clipped. 
 

Klightebrightness ´--=1  
 
Eq 2: Exposure equation.  K is a correction constant. 
 
As the exposure adjustment works on the original high precision color values, it must 
be performed before color quantizing.  The final step before outputting the color data 
is to combine multiple texture samples that were taken for anti-aliasing.  This step is 
performed after quantizing in order to soften high contrast edges as part of the anti-
aliasing effect.  For example, if two over-bright samples were combined, the result 
would still be over-bright, and will be clipped for no tangible effect.  Samples that 
were already clipped will merge to produce better in between values. 
 

6.9 Lightmap Texture packing 
 
Texture pages typically represent power of two sized, possibly square textures that are 
efficient or are the required dimensions for video hardware.  Sizes such as 256x256 or 
512x512 are common.  Many such texture pages may be required to store the lighting 
result of a scene. 
 
Lightmaps may be generated from individual polygons, projected neighboring 
polygons, or complex parameterised charts of polygons.  Whichever way lightmaps 
were created, they will be numerous, and will likely have complex shapes.  The 
lightmaps must be packed into the smallest number of texture pages to make efficient 
use of limited memory. 
 
Mip mapping has the effect of blurring nearby texels together at every subsequent 
level, eventually leading to a 1x1 texture that often represents the average color of the 
whole texture.  When different textures are packed together into the one texture page, 
the average, and even the neighboring texel colors are often unrelated.  Artifacts that 
show discoloration become visible, with increasing frequency as lower level mip 
maps are selected.  In an effort to reduce this problem, unused texture space may be 
filled with texels relating to the lightmap or extra border texels may be added.  Many 
software programs that use lightmaps only allow or generate the top few mip levels. 
 
Textures need to be optimized for cache efficiency.  Video memory is limited, and the 
cost of swapping textures in and out of video memory, or chip memory is high.  
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Textures near each other, that will likely be rendered together, should be packed 
together.  The classification of what near is can be implemented in various ways.  
Lightmaps that are classified as near each other will be assigned a grouping identifier 
that will cause them to be packed together if possible. 
Examples of grouping classifications are:  

·  The object identifier or index in the scene set. 
·  A room or cell that may define parts of the scene. 
·  A octree division of the scene into blocks. 

 

6.9.1 Box sorting 
Optimally sorting boxes and other shapes is known as a hard problem because 
depending on early sort operations, that may appear to be good, later ones are 
effected, perhaps negatively.  This is true for BSP construction.  Luckily there are 
simple alternatives to find the ultimate solution, and these simple approximations 
yield excellent results. 
 
Boxes are stored in groups, so the sort process works on a group of boxes that should 
be packed together.  Boxes are sorted from large to small.  Height and width form the 
major and minor sort keys, so that same height boxes are still ordered based on width.  
Identical size boxes have no defined order.  The idea is to create a set of free boxes, 
that are sorted small to large, and place the lightmap boxes into these free boxes.  
When unused space remains, it is split into more boxes and each of these is added to 
the free list. If there are no free boxes available, a new full size box is created, 
logically representing a new texture page.  The following algorithm describes the 
process. 
 
Add lightmap bounding boxes to a wait list, where they wait to be placed. 
Sort all wait boxes from large to small, by height then width. 
While boxes remain in the wait list 

Find a free box that is just big enough to store this wait box. 
(Free boxes are kept sorted from small to large.) 
If there are no free boxes, a new texture page is created at the 
maximum texture size.  This new page has one full size free box, and it 
is added to the free list. 
The first box in the free list that is large enough to hold a waiting box 
is used. 
Calculate up to two smaller boxes from unused (usually L shaped) 
space around the placed box, and add these to a free list’ 

Call the empty texture space reclaim function. 
Free unused free boxes 
Call the unused texture space reduction function. 
 
6.9.2 Unused texture space reduction  
When texture pages are less than half full, an optimization can be attempted that will 
create two, quarter size textures and pack them.  The process may continue 
recursively for several iterations before limits such as the minimum texture size is 
met, or lightmaps use most of the texture page space.  A texture page is considered 
half empty when less than half the space measured vertically is used.  When this 
occurs, it is already known that the height of the tallest box is less than half the page 
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Height.  If the width of widest box is also less than half the width of the page, then the 
page is a candidate for reduction.  Two quarter size pages are created and added to a 
free list.  The contents of the page are run through the same algorithm described 
above so that the boxes are placed once again. 
 

5.9.3 Empty texture space reclamation 
When a lightmap is placed, it uses up a rectangle equal to its size, but the lightmap 
image may be thin diagonal, hollow, or a complex convex shape, causing much 
texture space to be wasted.  At this point in the process, a space reclaiming function 
may be called in an attempt to locate (rectangles of) free space and add them to the 
free list so they may be used.  Many complex algorithms could be developed to locate 
this space.  Many other methods could have been used to reduce this situation, such 
as: 

·  Splitting convex lightmaps during their construction phase.  This would create 
smaller, convex shapes, but increase the number of seams and discontinuities 
in the lightmaps. 

·  Rotating lightmaps from diagonal to horizontal or vertical alignment, or to fit 
arbitrarily shaped free space.  Although diagonal shapes may be corrected, 
and other shapes may benefit from improved fitting, rotation causes variation 
in the texture axes, highlighting seams. 

 
Both these methods add complexity, extra work and generate new artifacts, even if 
they may increase texture space efficiency.  It is debatable whether these methods are 
even worthwhile, as discussed later. 
 
The chosen method simply samples the lightmap at regular intervals, such as up to 8 
times in width and 8 times in height, and attempts to flood fill rectangles.  If a seed 
position was not flagged as empty (by flagging with a NaN, or other Id), a rectangle is 
grown, one row or column at a time in each of four directions until it is blocked.  If 
the rectangle is larger than some threshold, it is added to the free list and available for 
use by other lightmaps. 
 
Tests showed that increasing and decreasing the configuration parameters, though 
reclaiming more or less space, did not reduce the number of texture pages used.  See 
figure 12 for some examples.  Attempting to reclaim more space takes lots more time, 
but pays rapidly diminishing returns.  The reason for this is that number of texture 
pages is largely determined by the number of large lightmaps.  The smaller lightmaps 
merely fill out the wasted space left by the large ones.  The large lightmaps may be 
efficient, with most of their space filled with valid color samples, or inefficient, with 
large quantities of flagged invalid samples.  The inefficient cases are usually hollow, 
diagonal or concave.  Since the flood fill method predominantly reclaims square 
shapes, this is not a problem, because horizontal and vertical rectangular shaped 
lightmaps are already packed well by the original method, and contribute little to the 
number of texture pages used.  The inefficient cases are readily filled with boxes and 
their space reclaimed.  Note that this method works best when lightmap shapes are 
mostly homeomorphic to discs.  If they were all, for example, identical size triangles, 
they would not pack at all, and reclaimed space would remain unused.  There are 
potential cases that would hinder the regular sample flood fill method.  If a lightmap 
looked like a grid that just happens to lie in perfect alignment with the sample pattern, 
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it may contain plenty of free space, but none if it would be discovered by sampling.  
This pathological case is unlikely to happen, and if it did occur regularly, a possible 
solution is to simply jitter the regular sample points by up to half their step size. 
 

 
Fig. 12: Left, Middle and Right show small to large amounts of reclaimed space respectively.  In 
these images, Green (Light Gray in B&W) is reclaimed space, Red (Dark Gray in B&W) is unused 
space and lightmaps fill the used space.  Note that although lightmaps are shuffled around, no more or 
less texture pages were used, even in these three extreme examples. 
 

6.9.4 Box sorting performance optimizations 
When a naïve box packing process is run on tens to hundreds of thousands of 
lightmaps, it may start to slow down.  The QuickSort algorithm was used to sort wait 
boxes.  A fast insertion sort maintains the free box list.  A block memory allocator 
rapidly feeds the process with new free boxes.  These tools significantly reduce the 
packing time that would otherwise occur with a brute force implementation. 
 

6.10 Image Improvement Techniques 
 

6.10.1 Mutli Sampling 
Mutli sampling lights by turning point sources into surfaces has some anti aliasing 
effect, but is only part of the solution.  Various parts of a scene will not be classified 
such that a soft shadow will render there. 
 

6.10.2 Anti-aliasing 
The two main types of anti-aliasing experimented with in this implementation are 
multi sampling and super sampling.  Multi sampling uses a table of offsets such as the 
corner and center points of a texel.  These extra samples are then averaged, possibly 
with weighting.  Super sampling merely renders a higher resolution output, typically 
2x or 4x some size, then filters the result down.  A quick and effective alternative is to 
sample texel corners, as this logically only adds one extra row and column of unique 
sample points.  With this method, the samples at two edges of each texel are shared 
with its neighbours so they really don’t need to be computed at all.  The processing 
cost is tiny and the result is adequate for our purposes. 
 
Unfortunately all types of anti-aliasing tend to reduce the effectiveness of correcting 
texel samples located inside solid space (discussed later in this section).  This occurs 
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simply because multiple correct samples are merged to produce an incorrect result.  It 
is not possible to assume that lighter or darker sub-samples are more correct than each 
other, as it may be light or shadow that is bleeding into the wrong place. 
 
6.10.3 Detection and correction or samples inside solid  space  
Often, near walls, or places where two surfaces meet, texel samples are generated 
such that they bleed the wrong color.  For example, a wall made from two opposite 
facing polygons, with no thickness, may divide a floor that is lit on one side, but not 
on the other.  Depending on where the texel sample is, light or darkness may bleed 
from the other side of the wall.  To correct this, walls, as in real life should be 
modeled with volume.  The sample texel size should relate to the feature size of the 
model geometry.  If the model is tiny or has intricate details such as thin pipes, a 
higher resolution texel is required. 
 
Another solution is to use CSG (Computational Solid Geometry) methods and turn the 
scene meshes into a skin.  All overlapping and intersecting polygons are resolved into 
a skin around the solid space with hidden and junk parts of the mesh removed.  This is 
a difficult process to make robust, introduces many new mesh faces, modifies the 
model geometry, and still doesn’t help in cases where objects are stacked on each 
other without merging. 
 
A generic solution was found that works with polygon soups.  The method is stable 
even when meshes contain triangles that intersect, are poorly shaped and do not form 
a manifold style surface.  However meshes that contain closed manifold style surfaces 
that do not obviously intersect produce much better results.  This method tries to 
determine if a texel sample point is inside solid space, and if so, correct it by shifting 
the sample point up to one texel width away.  First the sample point is elevated 
slightly away from the surface, via its normal, or the polygon face normal.  This is a 
good practice because it can prevent accidental collision with the owning face, as well 
as facilitate other optimizations. 
 
A set of tiny rays are cast from this point.  Only 4 to 10 rays are necessary for good 
results.  If any of the rays hit a back face, then the texel sample is inside solid space, 
otherwise it is okay.  If the texel sample point was in solid space, a set of position 
offsets, ordered from near to far relative the original sample point, are tested.  When 
none of the shift attempts succeed, the sample point is left unmodified, because it is 
likely to be well inside solid space and remain unnoticed.  See figure 13 for before 
and after results.  This method runs reasonably fast as it exits early when the sample 
point is already valid, which is most of the time as the output resolution is increased.  
The tiny ray tests are not very expensive as only a small portion of the scene is 
considered for each test.  It may be best if objects that rest on top of each other are 
made to intersect each other slightly, in order to ensure that sample points between 
them are detected as in-solid. 
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Fig. 13: Texel sample points inside solid space. Left: Color bleeding from samples located in solid 
space.  Right: Bad sample points detected and corrected, by shifting to a valid nearby location. 
 
 

6.10.4 Texture seam reduction 
Whether textures are generated from individual triangles, axis projections, or a 
minimal distortion texture atlas (Lévy et al. 2002), when the textures meet up along a 
polygon edge, they may display an artifact called a texture seam.  Refer to figure 13 
for examples of this. 
 

 
Fig. 14: Texture seams. Several seams are visible. Left is unfiltered, right is bilinear filtered. Both 
sets show curved surfaces with different dominant axes mapped with low-resolution texture and 
rendered with bilinear filtering 
 
The following are some factors that contribute to the visibility of seams: 

·  Texel orientation. The two dimensional U and V directions may not be 
identical between polygons, particularly if the polygon normals have different 
dominant axes (such as one major in +X and the other major in –Z). 
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·  Texel Size and shape.  Texels are often aligned with two of the world axis and 
look like Lego™, but because they are mapped to sloped polygons, the final 
shape of the texel is distorted.  On a single face, it may be skewed into a 
diamond shape.  Across several smoothed faces, it may look quite unusual.  If  
polygons use different texture resolutions, then the texels on either side of the 
edge will be of different size. 

·  Texel origin relative to vertex position.  Unless texel origins are snapped to 
vertex positions (introducing a bunch of other issues), the texture axes don’t 
line up, or line up along one shared axis only. 

·  Texel color.  If the texture color along a seam is of high contrast, the seam will 
be much more visible. 

·  Texel neighbors. When bilinear filtering is used, four texels are sampled in 
vertical and horizontal directions.  If the neighboring set of colors is not 
matched across the edge boundary, and does not extend at least one texel, 
seams will appear. 

·  Mip maps.  When mip mapping is used, neighboring texels are recursively 
filtered down.  Mip mapping of packed lightmaps causes completely unrelated 
colors to be merged and displayed.  Mip mapping within a single lightmap 
merges colors such that they may no longer match their edge neighbors. 

·  Bilinear filtering.  Bilinear filtering exaggerates the seams initiated by most of 
the above factors. 

 
Texture distortion is inevitable when a curved surface is projected onto a plane, or 
flattened in some way.  This is the classic map makers problem.  The texture seam 
issue is very much related, as curved surfaces, when flattened must join up, even if the 
entire surface is flattened into a single chart. 
 
Surfaces that are not curved do not pose a problem, as samples along polygon edge 
boundaries may simply be sampled beyond the boundary onto the next shared surface.  
If there is no shared surface, the sample point can be pushed back inside the original 
surface polygons.  Extra border samples created to improve bilinear filtering or mip 
mapping may be handled in a similar manner, shifting or sampling outside, rather than 
by extrapolating existing samples. 
 

7 Optimizations 
 

7.1 Caching 
 
7.1.1 Last hit poly/object caching 
It is possible to take advantage of coherence for visibility testing.  After all, if a 
visibility test for one sample intersected an occluder, there is a reasonable chance that 
the next sample may also be occluded by the same object or polygon.  Both these 
items are cached, the last polygon that was hit, and the object owning that polygon.  
The visibility ray test simply checks the cached polygon first.  If that polygon was not 
hit, the cached object is tested first.  If there is still no hit, the cache is invalidated and 
the test continues without the benefit of the cache.  Experiments showed that allowing 
the cache to have a lifetime of up to three misses could increase performance, but 
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more experiments would be required to check if there is consistent benefit.  Caching 
can provide a significant performance increase.  An estimate of 30% is not 
unreasonable, with better performance at higher resolution and when occluders are 
regularly close to light sources. 
 
7.1.2 Potential occluder object test sets 
As a lightmap may consist of multiple polygons, and a light may consist of multiple 
samples, it can be worthwhile bounding these higher-level objects and caching some 
information about their relationship.  If both the light source and the destination 
surface have bounding boxes, a convex hull can be computed that bounds all light 
rays that could possibly be considered between the two entities.  This hull can be used 
to collect a list of objects that are potential occluders, and this reduced set of objects 
may be reused for all ray tests with between the light and the destination object or 
surface.  The cost of computing the bounding hull is small and amortized over the 
(usually) numerous ray tests.  Since the two objects are boxes, the bounding hull may 
be computed directly, without the need for generic algorithms like QuickHull (Eddy 
1977). 
 
7.1.3 Redundant poly tests in the BSP 
Polygon references are stored in the BSP multiple times.  This occurs because the 
polygons are not physically split, but are logically split, so a hyperplane dividing a 
single polygon merely causes two references to the same polygon to be stored.  This 
means that both parts of the polygon may be tested at different times.  It is possible to 
flag the polygons in a way that prevents redundant testing.  Enabling or disabling this 
cache proved to provide a tiny speed increase or decrease.  The benefit is only 
realized when lots of redundant testing occurs.  The effectiveness is highly dependant 
on the BSP tree construction method, configuration, and the mesh geometry.  With 
highly optimized point in poly testing and the relatively expensive cost of random 
memory access to a flag or cache table, this potential speed-up should be attempted 
with care. 
 
7.1.4 Precalculated lighting values and constants 
Some parts of the lighting equations may be pre-calculated.  Anything that is constant 
should be calculated and stored.  Some of the non-constant parts of the lighting 
equation that are reused should be stored locally to baby sit the compiler.  If high 
precision is not required, storing reciprocals and multiplying can reduce the number 
of divisions.  Along that line, modern PC CPUs have low precision floating point 
instructions that can speed up reciprocal divides and square roots.  Some equations 
can be merely reordered to make better use of precomputed constants.  The spot light 
specific code benefited from this, with divisions completely removed. 
 

7.2 Early outs 
 
The fastest code is the code not executed.  There are various tests, and parts of the 
process where the result is logically determined before it is exhaustively computed.  
Here are some: 

·  Light behind surface. Simply test if the incident light would strike the front 
face of the texel sample.  This is a dot product test that is already part of the 
lighting equation. 
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·  Insignificant light. Like other types of radiation, light decays or is attenuated 
as the distance from the source increases.  The tricky part here is determining 
when the light energy is no longer significant and can be ignored without 
being noticed.  An effective way to determine if the light is significant, is to 
compare with a minimum energy threshold and a percentage of emitted light 
threshold, which ever is larger. 
This early out occurs before the (relatively slow) visibility test and can fire up 
to 40% of the time (with 5-30% more common), but is highly dependant on 
the number, size, and position of lights.  Remember that this lighting method 
relies on using large numbers of (often tiny) lights, so the conditions for 
culling are ideal. 
The values found to be reasonable in the described implementation were: 
Fixed Light Threshold = 0.04% of saturation, or 0.1 / 255 for 8bit final color 
components. 
Emitted Light Threshold = 0.1% of source energy, or 0.1 * LightIntensity. 
These values can be adjusted for increased speed, or output accuracy.  In the 
described implementation, the visual difference in output was 
indistinguishable through a range of extreme tests, while the performance 
increased significantly. 
If the thresholds are set too high, a scene may suddenly become dark as lights 
are culled too early.  If the thresholds are set too low, no performance increase 
will be realized.  The combination of the fixed and relative threshold, as 
described, greatly reduces the chance of sudden visual artifacts due to changed 
lighting conditions. 

·  Light source too far from destination object or lightmap.  Lightmaps and 
objects have simple bounding volumes such as boxes or spheres.  If the closest 
point on the bounding volume is further from the light than a threshold, then 
that light’s contribution is insignificant, and should be ignored.  The threshold 
value is calculated in a similar manner to the insignificant light test described 
earlier.  The threshold should be conservative, only exiting early if the light is 
definitely too far away to consider. 

·  High level scene information.  High level scene information such as Cell & 
Portal connections, Rooms, Object hierarchies and visibility tables should be 
used whenever they are available, and if their knowledge could be coded as a 
early out test.  For example, a scene with Cell & Portal descriptions may have 
a Cell to Cell visibility table.  That table can be simply accessed to determine, 
for example, that a light inside Cell A could not possibly be seen in Cell B. 

 
Here are some non-early outs: 

·  Back face of polygon.  It may seem intuitive to back face cull as you would 
with normal rendering, but if the scene represents solid objects and the test is 
for occlusion only, then checking for back faces is a waste of time.  It is best 
to treat polygons as double sided as long as they are opaque. 

·  BSP Traversal.  When traversing a BSP for the sole purpose of visibility 
testing (shadow testing), there is no need to logically traverse a ray or line 
segment from start to end.  There is also no need to delay testing polygon 
contents if there is a possibility the polygons might be intersected by the test.  
The idea is to test the polygon contents stored in the BSP tree as efficiently as 
possibly, not using naive or generic ray testing traversal methods which would 
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provide otherwise useful things such as first hit results.  The intention is to exit 
as soon as any occluder is detected. 

 

8 Future extensions 
 

1. The technique presented in this paper could be implemented in hardware for 
both view dependant and view independent rendering.  Today’s programmable 
GPUs could handle the most time consuming part of the process: lighting and 
visibility testing. A pixel shader could compute per pixel lighting values and 
add them to a destination buffer.  A stencil or shadow buffer could be used to 
perform visibility testing between lights and scene geometry. 

 
2. The movie ‘Final Fantasy: The Spirits Within’ used many laboriously hand 

placed fake lights to simulate global illumination (though it did use a photon 
map for caustics) (Christensen 2001).  The part of this process used to identify 
and create potential indirect light sources may easily be implemented as a 
software plug-in for other renderers.  This could assist artists, or relieve them 
entirely of the task of placing many fake lights to simulate realistic indirect 
light.  First, a (relatively small) photon map is constructed from the scene 
geometry and light sources.  An arbitrary number of fake lights are then 
quickly created and passed back to the application for acceptance or 
modification by an artist. 

 
3. Currently the texture seam issue is not resolved adequately, so this area needs 

more work.  Recent research on automatic texture atlas construction is yet to 
show an efficient, robust solution to texture seam removal, beyond the 
significant reductions achieved by the various methods.  Many of the 
parameterization algorithms still introduce significant texture distortion 
making them unsuitable for our use. 
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Appendix A: Sample output 

 
Fig A.1: A test room lit and rendered in real-time by the described technique.  Only 
the lightmaps are rendered. 
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Appendix B: Early attempts - Described by the autho r 
 
In the past, I had written light mapping tools for use with computer games, that 
produced results similar to those seen in the Unreal™ and Quake™ games.  I used 
hybrid mixes of ray tracing and radiosity, favoring a method of blending high 
resolution ray traced direct light with low resolution radiosity style indirect light.  
Although the results looked impressive (at least compared to the competition) I was 
unhappy with many parts of the process.  The radiosity phase required passing the 
scene geometry through a potato chip cutter to form patches of reasonable size.  Form 
factor calculation could have been stored in memory, had I had 4-10gb of it.  The 
whole process really needed several CPUs working in parallel to reduce the process 
time. 
 
Now, some years later, and even with this new technique, not all problems are solved, 
and some new ones are created.  Expectations are higher, geometry poly count is up, 
and smooth surfaces are frequent.  I started out investigating Photon Maps and pretty 
soon became quite excited by what I was reading.  I hurriedly implemented a simple 
photon mapper and it worked nicely, just as the papers said.  But, and there’s always a 
but. I didn’t at first realize why no one was doing what I was trying to do, that is, 
produce a final result by directly visualizing the photon map.  The two major 
problems with the photon map are: 

1) The photons are sampled using random and statistical means and look blotchy.  
Filtering is required at the very least in order for the results to look acceptable. 

2) The edges of polygons, the edge of the scene, and overlapping polygons cause 
border artifacts where the photon energy density is sampled incorrectly 
producing either extra bright or extra dark output depending on the 
implementation.  Refer to figure B.1 for a basic border case. 

Refer to figure B.2 shows output illustrating both these issues.  Both of these 
problems do have solutions, such as using more photons or clipping the geometry to 
the sample shape, or using a z-buffer to calculate surface area.  All of these solutions 
however, cause a dramatic slowdown and detract from the elegance of the photon map 
technique.  Modern ray tracers often use the photon map to direct some other indirect 
lighting technique, or build an irradiance map which is sampled as part of an indirect 
light contribution process. 
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Fig. B.1:  Two photon samples.  The photon density sampled on a border is incorrectly estimated.  The 
sample size has grown too large while finding n samples.  The geometry independent photon map does 
not contain knowledge of borders and density correction methods are inelegant. 
 

 
Fig. B.2: An early screen showing direct light via ray tracing combined with indirect light via direct 
visualization of the photon map.  Notice the extra dark edges and corners caused by incorrect density 
estimates.  Also notice the splotchy indirect light cause by randomness. 
 
Quite disheartened, I feared I may have to give up the photon map technique 
completely, and looked at various other methods.  I briefly investigated spherical 
harmonics (Sillion et al. 1991), but it did not appear to be useful to this specific task.  
I consider spherical harmonics to be an energy reflectance representation compressed 
on the surface of a sphere, and may be useful for some other, perhaps even real time, 
approximate lighting solution. 
 
After browsing a paper on Instant Radiosty (Keller 1997), I recalled an idea that I had 
been thinking about for years and experimented with before: Turning indirect light 
into direct light sources.  My earlier attempts had all failed, but I realized I now had 
the tools I needed; a photon map to collect emitted and reflected energy, and a 
balanced kd-tree to sample it back into light sources. 
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I initially used an accumulation buffer (as Instant Radiosity does) to test this new 
technique, but found that although it produced a artifact free result, the lighting was 
bland and low in contrast.  Hot spots near lights disappeared and areas with little light 
became even darker.  I called this the ‘chemo’ method since both the good and bad 
parts of the solution were removed; the high contrast lights, and the artifacts 
associated with the virtual light technique. 
 
I tried merely adding light contributions to the output, and although this produced 
excellent lighting results, the bright spot artifacts near the light sources were 
unacceptable.  Biasing the light source area in the lighting equation proved to 
effectively remove these artifacts while preserving the light integrity. 
 
Many more challenges remained.  The new technique turns the few lights in a scene 
into hundreds or thousands of lights.  Accelerating the quantity of light samples 
required carefully choosing, implementing and configuring various acceleration 
structures. 
 
B.1 Optimization 
Something that the author has learned about low level optimizations, is that they are 
highly machine/system dependant, and the rules change over generations of hardware.  
For example, current CPUs have high arithmetic performance and relatively slow 
(non-cached) memory access.  Thus techniques that involve precomputation or look 
up tables for acceleration, should be used with great care. 
 
Unfortunately most current CPUs (and GPUs) realize their full potential only when 
performing a large homogenous process.  This low level parallelism is difficult to take 
advantage of without restructuring code (often into an ugly or non intuitive state), or 
spending large amounts of time writing and testing assembly code.  The best 
experience is when the compiler identifies code that could be optimized with vector 
operations and automatically does so.  Vector and Matrix manipulation are obvious 
candidates for such optimization, but are not always part of a bottle-neck inner loop.  
As always, operations like square root and divide consume disproportionate amounts 
of clock cycles.  Ordering conditional statements to aid branch prediction is useful.  
Packing data into minimal structures, aligned in memory at contiguous addresses, is 
critical for efficient memory access.  Object Oriented methodology should be used 
with care in performance critical areas lest they introduce hidden, unnecessary cost.  
Imagine if each photon structure was derived from a base object class, allocated with 
new and implemented virtual function access to member data.  Thought that may 
sound amusing, during the authors working life, he has seen commercial code, usually 
(but not always) written by enthusiastic junior programmers doing things exactly like 
that. 
 
B.2 Strange Discoveries 
During development, some unusual discoveries were made relating to performance.  
Further investigation revealed these issues are known, though rarely highlighted. 
Calculations involving INF (infinite) and denormal (extremely small) numbers can 
approach 1000 clocks of CPU time, or take several hundred times longer than 
expected.  NANs will also cause massive slowdowns, but will not occur unless there 
is an error.  The penalty times differ greatly between CPU brands and modules such 
as the FPU and SSE found on the Pentium 3 and 4 CPUs. 
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Appendix C: The kd-tree 

 
Fig C.1: kd-trees.  Unbalanced, Balanced, Stored as Heap and Dynamized versions. 
 
The kd-tree used in this implementation is similar to the one described by Jensen.  
The structure is a balanced three-dimensional binary tree that is stored like an array 
and similar to a heap.   The index of each element implies its location in the tree 
without the need for child pointers (such as Left & Right or Front & Back.)  Because 
it is balanced, if the last branch in a sub tree has a single child, that child must be the 
Left child as the Right child index is out of range. (That is why trees constructed this 
way are often called ‘left balanced’ binary trees.)  The tree is constructed using a 
median split approach.  The algorithm is a ‘divide and conquer’ method that is very 
similar to the QuickSort algorithm. 
 
The kd-tree data can be constructed with the root node located at [0] or at [mid].  If 
the root is at [0] then the children are located at curIndex*2+[0,1].  This method could 
possibly provide better cache and stack performance.  If the root is at [mid], then 
children are located at (endIndex+startIndex)/2+[-1,1].  This method allows all 
children to be found between the start and end indices and is the method used by this 
implementation. 
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Dynamic kd-tree 
Kd-trees are rarely dynamic because they realize their speed from careful 
construction, something that cannot occur with arbitrary dynamic data.  Exported 
mesh data is often near worst-case for a dynamic kd-tree as it does not appear in a 
spatially random order at all, thus causing a dynamic tree to grow in a very 
unbalanced fashion.  Testing for uniqueness while adding vertices is also a worst-case 
scenario because the Insert and Find operations are interleaved.  Kd-trees are most 
efficient when all data is added, and then the tree is balanced.  Search operations may 
then be performed in a highly efficient manner.  The kd-tree was dynamized by 
adding new data to an array that could be accessed as a second phase within the Find 
operation.  If data is removed, deleted nodes are flagged as removed, but not actually 
removed from the structure.  Periodically the tree is rebalanced, with the deleted 
nodes removed and recently inserted nodes distributed appropriately. 
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Appendix D: Notes on the Polygon BSP 
 
The BSP nodes 
The BSP nodes were originally homogenous and referenced by indices rather than 
pointers.  Indices have many benefits such as simplifying serialization of the structure.  
Indices can be shorter than the pointer word size and indices can store other flags in 
unused bits.  Since the BSP contains some nodes with axis aligned planes and others 
with arbitrary planes, the axis planes stored unnecessary data causing memory to be 
used less efficiently.  Two different node structures were created, with different sizes.  
Although stored in contigous memory, the nodes are now referenced with pointers.  
An average of 20% of the nodes (range 15-30%) are axis planes, and tests showed that 
a significant amount of time was lost due to Level1 cache misses.  Mixing smaller and 
larger nodes improved memory efficiency and increase process speed by 9%. 
 
Some other failed BSP optimization attempts were: 

·  Balanced binary tree.  The intention was to control tree size and make 
traversal times more consistent.  The result was consistently large trees and 
consistently longer traversal times.  Balanced branches do not help in practice.  
Dividing space is more important. 

·  Least cost polygon split planes determined by favoring node balance, split 
polygons, or polygons on the plane.  None of these choices or combinations 
consistently produces better than ~2% improved traversal times than random 
or first polygon choices.  However, rejecting expected bad polygons like > 
30% splits may help. 

·  Arbitrary split planes constructed using geometry data such as edges and 
vertices rather than polygon faces.  The result showed that objects like a 
sphere could be split into more pieces than the single sided convex hull that 
would otherwise be expected.  The traversal cost also proved to be slower on 
average.  Adding more split planes can increase the traversal cost and must be 
done with care. 

·  Tree constructed with only axis aligned planes, or only planes from the 
contained polygons.  Neither of these methods are optimal when used alone. 

 
Some other potential, but not implemented BSP optimizations could be: 

·  Try to add top level nodes to the tree that are effectively simple bounding hulls 
around (particularly disassociated) bunches of geometry.  At least one paper 
describes a similar method, though the results showed that it had a positive or 
negative effect depending on the mesh/scene.  Perhaps manually splitting a 
complex object into multiple parts with simple bounds, to be queried as an 
earlier test, would be better than attempting to integrated such bounds into the 
BSP. 

·  Test fire rays from outside and inside the mesh and use the resulting statistical 
information, in some way, when deciding how to construct the tree. 

·  When the top levels of the BSP are created in this implementation, bounding 
boxes are known, representing the voxel dimensions.  It would be nice to pass 
convex hulls to polygon-plane splits further down the tree.  As polygon-planes 
divide space, the hull must be clipped.  Using this information, better splits 
could be found, to divide the space rather than naively divide the geometry.  
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This method may have the greatest potential, if it could be done efficiently.  In 
addition, polygon points/edges could be reordered optimally for early-outs 
based on this knowledge. 

·  Actually split the polygons, build the tree, then throw the split polygons away.  
This method was tried in an earlier implementation.  Tree construction may be 
slowed by the resulting huge numbers of polygon fragments and inaccuracy 
may be introduced with tiny, sliver polygons. 
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Appendix E: Process performance statistics. 
 
Process test results 
These test results were gathered at one point during the development of the process.  
They may not accurately represent the current or potential performance of the process.  
In addition, some debugging and statistics gathering code was enabled in the test 
build.  The test results are provided for the following reasons: 

·  To compare image quality with different settings. 
·  To compare process time with different settings 
·  To provide rough figures of process efficiency. Eg. Does this technique 

require minutes, hours or days to produce usable results? 
 
Notes on this scene and the test output: 

·  The tests use the same texture resolution throughout the scene.  Each object, or 
part of an object could have used a different resolution for a more efficient 
result.  For example, the door knobs and tap handles are small features that are 
lit poorly.  These would greatly benefit from higher resolution, while the 
ceiling and some bench surfaces could have used a lower resolution without 
compromising the quality. 

·  The lamp shades covering three of the lights present a difficult case for the 
indirect lights.  Many virtual lights are clustered around the lamps light source, 
on the inside surface of the lamp shade.  A large number of indirect lights are 
required to reduce banding caused by the high intensity light from the lights in 
the lamp shade. 

·  The table of statistics shows that the total time is determined by the number of 
texels (the surface area and the lightmap resolution) and the number of lights 
(a combination of multi-sampled direct lights and virtual indirect lights). 

·  Test1 is darker than the other tests.  If too few virtual lights are used, the 
indirect light in the scene is not approximated accurately enough and may look 
noticeably different.  The minimum number of indirect lights to produce a 
consistent approximate result does vary from scene to scene.  A rough figure is 
500-1000 indirect lights, but as little as 200 may be adequate for simple 
scenes.  Test3 used 1000 indirect lights and performs well.  Only the hard 
cases of the lamp shades highlight inadequate numbers of indirect lights in 
those areas. 

·  Test4 uses the highest resolution, the largest number of lights, and more 
photons than earlier tests.  Notice that the overall brightness is relatively 
similar to Test2 and Test3 that use one half to one tenth as many indirect 
lights.  Also note that the light distribution in Test4 is the same as Test6 that 
took much less time by generating a lower resolution output with the identical 
light settings. 

·  Observation of the time and quality statistics shows that varying the number of 
light samples or the lightmap texture resolution can produce similar lighting 
results with dramatic differences in processing time.  Quick previews can be 
performed in minutes, useable results in minutes to hours and high quality 
results in many hours. 
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System Configuration: 
Intel Pentium 4 2ghz 
WindowsXP Pro 
512mb PC2100 DDR RAM 
(Up to 50mb RAM actually used by process, when photon map, or output textures 
exist in memory.) 
 
Scene Statistics: 
Number of Polys: 67131 
Number of Lightmaps: 5237 
Number of Mesh objects: 35 
Number of Smooth groups: 3227 
Number of Light sources: 5 
Scene Dimensions:  11.4m x 10.0m x 2.5m 
 
Process Options: 
Anti aliasing - off 
Solid space sample correction  - off for Test1,2,3, on for Test 4,5,6 
Reclaim texture space - on 
Reduce texture pages - off 
Max photon bounces – 16 
 
Operation Test 1 Test 2 Test 3 Test 4 Test 5 Test6 
       
Num Photons 100,000 1,000,000 1,000,000 2,000,000 2,0000,000 2,000,000 
Lightmap resolution 0.05m 0.025m 0.025m 0.01m 0.1m 0.5m 
Multisamples per direct light 20 50 50 200 200 200 
Number Indirect lights 100 1,000 5,000 10,000 10,000 10,000 
Total texels 685,682 1,892,375 1,892,375 7,317,169 327,842 158,387 
Total Tex sample points 569,454 1,392,430 1,392,430 5,987,230 299,660 157,030 
Total Light sample points 200 1,250 5,250 11,000 11,000 11,000 
       
Total process time 2m 8.5s 19m 26.7s 1h 18m 57s 10h 40m 18s 40m 5s 24m 43s 
Prepare Geometry 17s 17s 17s 17s 17s 17s 
Create Smoothgroups 722ms 722ms 729ms 725ms 722ms 723ms 
Create Lightmaps 4.9s 4.9s 4.9s 5.15s 4.9s 4.9s 
Build Photon Map 2.8s 20.66s 20.71s 41.7s 41.8s 41.25s 
Balance kd-tree 152ms 1.73s 1.72s 3.56s 3.58s 3.59s 
Create indirect lights 104ms 1.16s 1.15s 2.13s 2.12s 2.17s 
Build Polygon BSPs 11.3s 11.3s 11.3s 11.3s 11.3s 11.3s 
Light World  
(& Calc Sample Points) 

1m 48.3s 18m 46.4s 1h 18m 17s 10h 39m 15s 39m 3s 23m 40s 

Pack Lightmap textures 78ms 522ms 523ms 714ms 31ms 13ms 
 
The images have been ordered in a snaking pattern so they may be compared to neighbors of similar 
configuration. 
   1 ®  2 

    ¯  
Order of images:   4 ¬  3 

¯  
5 ®  6 
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Camera position 1 
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Camera position 3 
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