Diffuse Global lllumination via Direct and
Virtual Indirect Light Sources

Greg Douglas
Auran
2003

Abstract

The quest for realistic computer generated imagasirmues. An exciting area of
which is real-time rendering. Images need indihgtit, soft shadows and color
bleeding in order to exhibit realistic global illimation qualities. Achieving real time
frame rates requires compromise as high qualithott such as view dependent ray
tracing may consume hours instead of the millisds@vailable. Today’s
applications must run on today’s computers, theontgjof which are still using last
years hardware at best. Light-mapping or precoetplight and shadow textures are
a well known technique, used in computer and vigkrmes, to enhance the realism of
statically lit scenes at very low run-time cost.

This paper presents a new lighting technique capaflendering diffuse
global illumination for static scenes of high coety built from arbitrary polygonal
meshes. It draws from existing methods such agraaiyng, photon mapping and
radiosity to produce worthwhile results with a goliable precomputation cost. The
precomputation phase and the final real-time reptiase are designed to run on
systems with limited memory, and do not require sppgcific CPU and GPU features
beyond floating point calculation and texture mapgpi

Keywords
Global lllumination, Indirect Light, Photon Map, Raering, Real Time

Contents

1 INTRODUCTION. ettt eee e e e e e e ennnnnes 3
2 HOW DOES IT WORK? ...ttt e e eeeitttet et aaa e e e e e e e s s s s s snnsnnssaneeees 3
S WHY DOES IT WORK? ...ttt e e e e e e e e e e s s nsnsaeeeees 4
A LIMITATIONS ..ottt ettt ettt et e et e e e e e e e eneenseeneneeees 6
5 THE ENTIRE PROGCESS ...ttt 7
6 PARTS OF THE PROGCESS.oitiiiiiiiiiie et a e 9
6.1 SMOOTHING GROUP CREATION. ...ttttttiiiieetiietaaaaeeeaeassssssssssssimnennesseeaeseaessssssnnnns 9
6.2LIGHTMAP STRUCTURE CREATION.ccttuuuaaaeettunaaaaeesnnnaaeeessnnmnaasseeeeessnnnnns 10
B.3PHOTONMAP ...ttt ittt ettt e e e e e e e s e e e e e e e e e e e e e e e e e e beaeees 11.
6.3.1 PNOtON StOrA0Ecvvviiiiiiiiiei e emmme ettt e e e e e e e e e e e aeeenne e 11
6.3.2 Photon emitting and reflecting........cccceeveveiiiiieieeeiiccee e 12
6.3.3 PhOton SAmMPliNGooiiieeieeeee e 13
6.4 ORIGINAL DIRECTLIGHTS ..tttiiiiiiiiiiiiieieee e ennnee e 14
B.5RAY TRACING ... e ttetttueeeeeetta e e e e eeat e e e e et et meaa e e e e eeeasa e e aeesann e eeeeeesnnnaeaeas 15.
6.5.1 Potential TeSt ODJECTS...........oeeee e eeeeeetnees s s e e e e e e e e e eeeeeeeeeeeennnnns 15
6.5.2 POIYQGON BSP ..o ettt a e e e e e e e e e e e e e e e aenenne e 16
6.5.3 BSP EPSIHONScoiiiiiiiiiiiieee e sttt 19
6.6 POLYGON TESTING. ..cetttttitiiieaeeeeeeeeeeeeasaase bbbt e e e eee e e e s s s s e s s s sbbbbbb bbb e seeeeeeees 21
B. 7 LIGHTING ..ttt e e ettt e ettt e e e et ettt seee e e e e e e eesaa e e e e eeestn e e eeeeennnn s aeeeesrnnmnns 22
6.7.1 Approximate surface light equation.....ccccee.cooeevvviieeeiiiiicici e, 23
6.8 COLOR CORRECTION ANDOUTPUT w..uuueeiietiiiaeaeeeneinaeeeeesnnnnseeesenemmmssnnaeaeeees 25
6.9LIGHTMAP TEXTURE PACKING ...cetttttteeeeeeeaeaaasaassaiiisbabssssseeeeeeesssssnnnssnsesnnees 26
6.9.1 BOX SOITING ..o eeeeeiiiiiieieeeiiiiii e ettt e e e e e e e e e e e eae e e e e e 27
5.9.3 Empty texture space reclamation.......ccccceeccceeeieiiiie e 8.2
6.9.4 Box sorting performance optimiZatioNS .o .oooeveveiiiiiiiiiiiiiiee e 29
6.10IMAGE IMPROVEMENT TECHNIQUESceiiiiiiiiiiiiiiiiiiiieeeeeeee e e e e e e eneeeeeseeeees 29
6.10.1 MUtli SAMPING..cceiiiiiiiiiiiiii e e eae e 29
6.10.2 ANti-AliaSING.....cceeiiieeeeeeeee e 29
6.10.4 Texture seam redUCHION..........coeeeeeeeeeee e 31
7 OPTIMIZATIONS ...t e e e e e 32
T LCACHING ..ttt ettt ettt et e e e e e e e e me e et e e e e e e eat e e e e eetbn e e e e e e ernnannnaens 32
T.2EARLY OUTS..etttttiieiiae e e ettt te e e e s s sttt e e e e e e e e e e e e ean 33
8 FUTURE EXTENSIONSooiiiiiiiiiiiiieee ettt tee s s s annnnne 35
REFERENGCES.ottt ettt et e e e e e e e e e e e e e e s e e s s s smmmnreeaeeee s 36
APPENDIX A: SAMPLE OQUTPUT ..ooiiiiiiiiiee et 37
APPENDIX B: EARLY ATTEMPTS - DESCRIBED BY THE AUTHO R......... 38
APPENDIX C: THE KD-TREE ... ittt a e e e e e e e e e a e 41.
APPENDIX D: NOTES ON THE POLYGON BSPccviiiiimiiiiiiiiiiiieiiiieeeeeaee e 43
APPENDIX E: PROCESS PERFORMANCE STATISTICS.covvviviiiiiiiiiieeeenn. 45

1 Introduction

This paper presents a new lighting technique thawsl on methods and tools used in
ray tracing photon mappingJensen 1996) anddiosity (Goralet al. 1984). The
lighting result that is produced approximates diéflobal illumination. The
technique works by using a photon map to locatesanaple concentrations of light
energy that have collected in the scene. Thesplsarare converted into a set of
virtual lights that are rendered along withect lights, in a view independent manner,
via ray tracing, onto texture maps covering thenecurfaces. This technique is
largely independent of scene complexity and is lgighalable in that the sampling
guality and time are directly related to configioatsettings that may be dramatically
altered while allowing the result to remain repraagve of the lighting solution.
Implementation details and related issues are@issented Appendix A shows
sample output from this technique.

This technique has some parallels witetant Radiosit{Keller 1997) in that indirect
light may be accurately simulated by creating nabrect light sources. It also has

ties to traditional radiosity that implies that ewsurface acts a secondary light source
during a simulation phase in which energy is disiied throughout the scene.

No special pre-processing is required for the gggmé& he implementation works on
triangle soups, however structures such as BSRuiBpace Partition) and Octrees
are essential for accelerating ray tracing andemgefficient operation of the
process. The scene does not need to be tessefiaderigrid as many Radiosity
techniques require. If the surfaces are processenin, very little memory is

required for the whole process, as buffers mayhlaeesl and the results stored along
the way. Only the scene geometry and various exa@n structures need be stored.
The photon map and surface sample points needensispthroughout the process.

2 How does it work?

In this lighting solutiondirect lights represent the first bounce of light refiegtoff a
surface, and thmdirect lights represent the final bounce. The photon begomes a
tool to statistically simulate and sample energpributed in a scene. The balanced
kd-tree is a tool; to not only accelerate manipafadf the photon map, but sample
energy concentrations in the scene in an effi@antwell-distributed manner.

Once a set of direct and indirect lights are cibftem the scene description and the
indirect light sampling process, the lights arelisopby illuminating the texels of the
lightmaps covering the scene surfaces. Variouslation techniques are utilized to
reduce the number of light samples and speed theeséing method used to
determine visibility.

These are the basic steps of the lighting process:
1) Generate global photon map. Not too many photomsemuired, a few
hundred thousand to a few million should be adegt@aiNumPhotons

2) Decide on thédumindirectLightsnaumber of indirect lights. Several hundred,
to a few thousand will produce a good result. mamber of photon samples
will be approximateljNumSamples = NumPhotons / NumindirectLights

3) Use a balanced kd-tree (3d tree) to store the pkot@raverse this tree,
sampling the firsNumIindirectLightphotons.

4) Use the photon position and surface normal to santmg nearesiumSamples
photons that have similar surface normals.

5) Add all the photon energy for each of these indiligbts together, and create
a new direct light.

6) Process thedadirectlights together with the original direct lightsjthireat
them as (radiosity style) surface emitters. Blesgource area to compensate
for light source bright spots, as these surfadédigre approximated by point
sources.

7) Process thdirectlights using multi sampling so they have an aféecewith
soft shadow edges. Tens to a few hundred samplel®@k nice.

3 Why does it work?

This lighting technique borrows concepts and mesHoain several existing
techniques. This section describes the detal®af particular methods have been
used or modified to help this technique producediggred results.

The photon map construction is fairly standard,thatRussian roulette (Arvo James
et al. 1990) rules are modified slightly. The mhomap stores energy to ernfe

final bounce not visualize on the surface before being seethégye. Because of
this, stored diffuse photons must have the surat@ applied otherwise they will
reflect the incident light color instead of theleeted light color when emitted. In
addition, if specular light is to be approximatadd it can be in a very dodgy
manner), the specular light samples must be stttredery bounce otherwise the
specular effect will be effectively lost.

The kd-tree is a three dimensional, axis aligne& B8e. When balanced, it
partitions space in a way that is consistent withdistribution of photon locations.
Note that using the kd-tree in this way has beenl oy Per Christensen (Christensen
2001) to acceleratignal gatheringin photon map enhanced ray tracers by pre-
computing irradiance. The sample positions inkithéree aresafesince a photon is
stored at a surface there. Light energy is comskby accumulating energy from
emitted photons and distributing it to virtual liglior emittance. Refer fayure 1 to
see how one thousand indirect lights were creaitad bne million photons in a
photon map. Notice there is a higher density direct light sources in areas where
light is being reflected.

Fig. L Indirect lights sampled from the top levels of #d-tree. This image shows one thousand lights
from a one million-photon map. A higher density(ioflirect) light sources is visible in areas where
light is being reflected. The three almost soligsters are actually inside lamp covers. The dtiver
lights were not covered. Although hard to telinfrthis angle, many of the new light sources in dark
areas are actually located on the ceiling.

When these virtual indirect lights are createck litaditional direct lights, they emit
from an infinitely small point. This can lead todght spot artifacts at surfaces very
close to the light source. It may be thought thablution would be to spread the
light out on a surface, or across multiple samgesthis would defeat much of the
benefit obtained by this technique. Besides, amahg number of indirect lights
(perhaps a thousand or so) are already used terémd light, so the number of
lights should be minimized. It turns out that bgding the source emitter area in the
lighting equation, the bright spot artifact thatuleotherwise appear can be
effectively eliminated. Refer tiigure 2 for original and corrected results. Further
work needs to be done to explain exactly what fhtexal bias number is, but simple
experimentation produces a good value very quicKiyhe bias is too small, the
bright spots are evident, if it is too large, thght result is darkened, but at the
moment where the spot artifacts disappear andghebdegins to noticeably darken,
the optimal bias is found. This bias factor issietent and appears to relate only to
the size (and shape) of the energy sample, buingpétse. A value of 10 was found
to be suitable for lights sampled with a sphere 2tb be suitable if sampled with a
cube. It might appear that the difference coulgibend that 10pi or such would be
more precise, but that is not correct. It musb &ls noted that the sphere and cube
samples are only approximations. Smaller and moneerous samples approach an
accurate result. Although the sample shape iharsr cube, the photons lie on the
scene surfaces such that a spherical sample 8atteandisc and cube sample to a
polygon. The size of the sample volume and thaesgeometry contribute to the
accuracy (or lack of) in this phase.

Fig. 2 Light source is above the white table. Left:gBitispot artifacts caused by
point light sources on nearby surfaces. Rightgl@rspot artifacts removed by
biasing the source area in the lighting equation.

4 Limitations

Several limitations exist relating to this lightitechnique. There are performance
and quality considerations, and the lighting resuttot a complete lighting solution,
as it does not simulate all the ways light intesagith the scene and viewer.

The inner loop of this lighting technique requiegsocclusion test, and that is
traditionally the slowest part of a ray tracer.eBwa hardware implementation would
require extra rendering and reads from a stenéi€bor shadow bulffer.

Better results are produced using higher resoluigput texels, and more indirect
lights. This means the process may need to rumifioutes to hours to produce
results of a desirable quality. A standard ragdarahould produce higher quality
view dependant results much faster.

Caustics and Specular light effects are not prodlilgethis technique, or at least not
visualized correctly. Note that the photon mapl@quoduce caustics by simulating
photons interacting with reflective surfaces andip@ating media, though the results
would not be good since very few photons are useldize implementation does not
visualize the photon map directly. This is actpallserious drawback in scenes with
lots of reflective surfaces. For example, if dtigvas close to a mirror, the reflected
light is not visible. It is however distributedreectly for other diffuse representation.
A dodgy compromise has been implemented that spiretons on reflective
surfaces, so they can be emitted from that sudadecreate some light even though
the light is emitted diffusely, thus losing theatitional focus that characterizes
specular light. Note that this technique was navended to simulate specular light.
The specular light is best rendered in real timeesit is largely view dependant. The
specular style light that is missed is causticat i highly directional indirect light
seen on diffuse surfaces. The earlier exampla,light, close to a mirror reflecting a
bright spot on a nearby surface, is familiar indnehitectural scenes tested. Caustics
are commonly noticed as the striking light pattesgen dancing near swimming
pools and water, caused by reflection and refractio

A low quality lighting result may show artifactdagng to the number and separation
of lights in the scene. The result looks a bi¢ ldn object lit by football stadium
lights, with a small number of distinct and sepedaghadows rather than one soft
shadow. Figure 3 shows an example of this.

Fig 3. Too few indirect lights cause light and shadamding.

Appendix A describes early attempts that led to the developwiethe lighting
technique presented in this paper.

5 The Entire Process

This section overviews the entire process from iripg the scene to preparing
output. Several significant parts of the processeapanded as pseudo code. Future
sections will describe particular parts of the @sses in depth.

Import geometry and lights
Scene Geometry and lights are added from an ext@dmar directly in code,
via an interface class. Mesh consolidation isqrened with shared or near-
identical polygon vertices are merged and degeadnangles are removed.

Initialize Direct lights from input lights
Direct lights are initialised from original lighbarces. Surface lights are
subdivided into multiple patches. Omni lights apadt lights will be mutli-
sampled later.

Build acceleration structures from mesh geometry
Polygon BSP trees are constructed for each polygesh object.

Transform local space geometry into global space
World space polygon representations are constrdoteslvery surface in the
scene.

Calculate bounding volumes for mesh objects
Various bounds and extra information is collectedalculated for each mesh
object.

Create acceleration structures from mesh objects

Scene and/or region BSP trees are constructedr® stesh obj7ect
references. Visibility tables may also be caladdbere.
Create smoothing groups from mesh object polygons
Smoothing groups are created from polygons thatestdges with near-
identical positions and normals.
Create lightmaps from smoothing groups
Lightmap sample structures are created from sgtslgfons in smoothing
groups.
Build Photon Map *
Photon map is created by simulating light reflecad absorbed within the
scene.
Create Indirect Lights *
Photon map is sampled to create more lights, wieeegy is reflected in the
scene.
Free Photon Map
Photon map is no longer required and its resouragsbe released.
Light the world *
All lights, Direct and so-called Indirect are sasplo light the lightmaps.
Visibility is determined via ray testing.
Pack lightmaps
Related lightmap rectangles are packed togethedanger texture pages.
Finalize lightmap texture coordinates
Polygon vertices are adjusted with final lightmegttire u,v coordinates.
Output lightmap textures
Lightmap texture pages are written to disk.
Geometry is ready for export
Data structures are ready to export or further clohetion.

* Expanded description of this part of the proce#iews.
Specific parts of the process in more detail.

Build Photon Map
Create photon emitters from Direct Lights
Calculate total light power for scene
While photon map no full
For each light
If light probability to emit is ready
Emit photon
While photon not absorbed or lost
Trace photon
If all photons have been lost for several passes
Exit now to prevent endless loop (scene is misgoméd)
For all photons in photon map
Adjust power by: total power / number of lights

Create Indirect Lights
For number of desired indirect lights
Sample photon map
Create indirect light and add to direct light set

Light the world
For all lightmaps
Prepare shared memory
Calculate sample points for texels
For all lights
Find objects that potentially occlude
Sample single lightmap with single light:
For every lightmap sample point and every |ggnnple point
Calculate lighting equation
Ray test visibility
Add result to lightmap sample color
Apply exposure correction
Apply multi-sample filtering
Fill RGB output from texel samples.
Release shared memory

6 Parts of the process

6.1 Smoothing group creation

A smoothing group is a collection of polygons tappear smooth because they share
edges, with vertices having both the same pos#mhnormal. Smoothing groups are
usually specified by the artist using an applicatio construct the scene meshes.
Sometimes mesh exporting programs consolidate #shmolygons and calculate
smoothing information. In order to maximise flektly, the implementation
consolidates the mesh by merging shared vertiogs@ates smoothing groups by
merging shared edges. Detecting and merging shvaréides and edges can be a
time consuming operation if implemented in a bfotee manner. Once polygon and
vertex counts reach the tens of thousands, algasithhat are more efficient must be
employed.

This implementation uses a dynamic kd-tree to acat# neighbor queries to detect
shared vertices and edges. As edges are desashbgrdices into vertex pools, the
edges are two dimensional integer pairs that as#yaaserted and queried via the kd-
tree. Refer to Appendix B for a description ofdraled and dynamic kd-trees. Other
possible structures such as hash tables, modtiechdilti dimensional range queries,
and r-trees, may be suitable for similar data maatpn. Such other structures
however, are often complex to implement and hageifstant per-node memory
overhead. Performing mesh consolidation, smootgimgp and lightmap creation
allows the implementation to easily hangt@dygon soupfrom any source, with
excellent performance.

6.2 Lightmap structure creation

A lightmap in this implementation is a rectanglesamples that will eventually be
output as a rectangle of texture. The lightmapcsiire stores a list of the polygons
that form a surface as part of the larger scenparameterization is also stored to
accommodate conversion betweaerture spacandworld space

Currently, polygons are grouped to form a lightraggdollows: A seed polygon is
selected from the remaining polygons ismoothing grougpelonging to a mesh
object. The polygon group is grown outward frora fieed polygon as long as
various criteria are met. The potential polygoresaready being selected from the
same smooth group, so for a simple world-axis ¢eplanar projection, the face
normals are compared for similarity. The signethoi@ant axis of the face normal
determines whether the polygon can be added tligthenap’s polygon group or not.
Other polygon attributes such as lightmap textasslution must also be identical, to
be a part of the polygon group. As the lightmgmesents a single texture, uniquely
covering the lightmap’s polygons, care must benakeprevent polygons from
overlapping. A polygon strip that looks like aly@n with ends crossed, or like the
twisted surface of ice-cream from a ice-cream nraghwill contain overlapping
polygons that would otherwise be grouped toget®rerlapping polygons are
rejected by a two dimensional separating axis &st,will form part of some other
lightmap.

Lightmaps are bounded by a world-axis aligned gondnded outward to the nearest
grid position, plus one or molmrdergrid units. These extra border units relate to
the extra texels, added to help with texture seéittesjng and mip mapping issues
discussed elsewher&igure 4 shows an example lightmap diagram.

ST
N
A 5
/ AN
NAEIRN
A T TN
g N
= |
\\ -y -]
\ |—1
|
s
Pl || L

Fig. 4: Diagram of a lightmap. WXx,y,z represent worlésx Tu,v are the texture axes.
Note the lightmap is at least one whole grid usigér than the contained geometry in
each direction. The grid represents texels irxate. At least one extra texel around
the geometry is sampled for use by bilinear intkan.

10

Sample points representing texels or sub-texelsaloellated across the face of the
lightmap. The sample points usual lie in the ceotéhe texels, but may be in other
locations for antialiasing. Earlier implementasaralculated the sample points for all
lightmaps as a phase before lighting. The cuiraptementation delays sample point
creation for each lightmap, until they are requif@duse in lighting. The sample
points are dumped as soon as they have been maaé. uSoing this greatly reduces
memory usage as each sample point is dladt vector3position, normal, color and
some flags.

6.3 Photon Map

The photon map, as described earlier, is a tod bgehis technique to simulate,
store and sample light energy in a static scéfigure 5 shows photons stored in the
photon map, rendered in the scene at their position

Fig 5: Photons in a photon malpeft: The light source is positioned above floating
table. The table has some alpha transparent tekigisce how the shadow varies in
density under the spherégight: Kitchen and Lounge with ceiling light and lamp
illuminating scene.

6.3.1 Photon storage

As hundreds of thousands to millions of photons bagtored in memory, the

photon structure size must be minimized. The imeletation uses the compression
methods described by Jensen, originally develoye@reg Ward. The photon power
or flux is stored in a 4byte RGBE, Red, Green, Bixponent form. Itis

compressed and decompressed as required. Thenihdiection and/or surface
normal of the photon are stored as two byte-sigeesl integers representing angles
guantized with a resolution of less than 1.5 degyrékhe photon position remains a
full 12 byte float vector3 because it is accessay frequently. The whole structure
is about 20 bytes. Slightly more if extra compdseare required, or padding is added
for memory address alignment. As the photon mamlig used to create indirect

11

light sources, it can be constructed, used, armvwhiaway, so its memory usage is
not as critical as it could otherwise be.

During kd-tree balancing, photon elements are dart@lace so no extra memory is
required. Photons are allocated in blocks in avgrg structure that behaves like an
array.

6.3.2 Photon emitting and reflecting

It is difficult to precisely control how many phai®will be emitted and stored. If one
was to set a exact number of photons to be em#tede may be lost entirely due to
gaps in the scene mesh, others may be stored taultipes due to the diffuse
reflectance model. The quality of the photon miag #lne amount of memory used is
determined by the number of photons stored, saaiing this is important. The
photon map is intended to statistically represkatdensity of energy distributed
throughout the scene. Lights of different intensiéed to contribute their relative
share of photons to the photon map.

The photon emitting process continues until attleggotons are stored in the photon
map. If a scene contained gaps or if lights waoenfy away from a non-enclosed
scene, many or all of the photons may be lost.h@umonfiguration must be detected
to prevent endless looping. Each light emittegiv@n a firing threshold and has an
accumulator that increments each time the oppdyttmifire passes. In this way,
lights are repeatedly cycled and given the occasidime a photon until the photon
map is full. The photon map will thus contain Bed, and often slightly more
photons than requested.

Photons are emitted from light sources in propartmtheir contribution of energy
relative to the combined energy of all lights. fIms are emitted in a quasi-random
manner. Each light type has an emittance funappropriate for its form. Point,
Spot and Surface lights are supported. Pointdigh¢ actually spheres and photons
are spawned from random points on the surfaceeo$pihere. Spot lights use a
random cosine distribution, oriented in the lighdigection, and scaled by the lights
outer-arc. Note that when th@ect lightis calculated for a spot light, it uses inner
and outer arc values for greater control, simiethe OpenGL and DirectX APIs and
familiar to real-time 3D artists. Surface lightsgn photons from random locations
across a polygon surface that has been tesseiftettiangles, and weighted
according to the relative area of the trianglen®whole surface.

Photons are all emitted with the same power, btiveg are reflected, their power
may vary and filtering may occur. If a photon miagpsolution were to consider
participating media such as translucent prismsay be desirable to store separate
red, green and blue photon maps. If other aspéeomplete realistic lighting
model were to be simulated, separate photon mapkie required to maintain
efficiency. A photon map just for caustics is oftesed in commercial renderers.
These caustic photon maps store a large numbéraddps and need to be directed at
specular surfaces and are only constructed forguarbf the scene actually visible to
the (synthetic) camera. This is because caustitophmaps are visualized directly
and must produce well defined output. The glolbaitpn map used by this process is
not visualized directly so it's implementation amghge is relatively simple.

12

6.3.3 Photon sampling

To make use of a photon map, the photons storgdrinst be sampled. A density
estimate can be made by either sampling with alfstee, or a fixed photon count.
Both methods produce identical results when confghaionfigured. Using a fixed
sample size for direct photon map visualizationsdoat usually produce as good
results as a fixed photon count because the fiketom count adapts its search size to
provide a better density estimate. Finding theesta photons efficiently can be
challenging. Most methods work by taking a smdlbexd size sample and resizing
up if the sample contained too few photons. Perfiog multiple samples in order to
find enough photons wastes time and needs to bieniaed. When photons are
located, they are kept in a priority queue so théarphoton may be exchanged with a
nearer one efficiently. This implementation usésnary heapas a priority queue.
Most operations on a binary heap cal@apifyfunction (not described here) that
rearranges the structure to preserve the heapnyope

The automatic sampling method used by this impleatem proves to be efficient,
resampling in some scenes well less than 1% diieewhen tested to directly
visualize the photon map. The initial Min samplees (ie. Sphere radius or box
extents) is almost arbitrary due to the algoritmagsd estimate correction. Min
should be set to a small number above zero, anddWlaxid be set to a reasonable
limit relative to the scene size (for example, tewdive meters for a real size house.)

This is the basic algorithm for automatic sampaeng):

Sample photons with current size estimate
If collected photons < desired limit
Adjust radius based on area density estimate
(Eg. If 25% less photons were found than desimctease the sample area by
~25% by adjusting the search radius.)
If radius > maxRadius
Accep the sample and continue
Else
Loop back and sample again
Else (If collected photons = desired limit)
Set radius to furthest photon dist + 10% or satorservative overestimate.
Don't loop back, but record and use the adjustearsext time.

Note that the number of photons sampled will n@xaeed the desired limit because
the nearest samples are collected, and the search will ter@iaa soon as that limit
is reached.

The shape of the photon map sample may be a sphareube. Results from either
are visually similar. Performance of the cube dammay be slightly better, and may
produce better results. The cube sample shapehlegen based on the logic that
since the top levels of the kd-tree are used tatermdirect lights, a cube sample
would be more compatible and accurate with the abigmed subdivided space of the
kd-tree.

13

6.3.4 Kd-tree sampling optimizations

The kd-tree is used to accelerate queries on thophmap as well as locate well-
distributed indirect light concentrations. Here aome optimizations used by the kd-
tree traversal function to sample photons in thetqein map:

- Sqrt() is avoided. The squared radius is mainthinstead, and vector
components (eg. Extents[axis]) are used where lplessWith a sphere shaped
sample, the sign check is performed on the axtanlig, as the squared radius
is always positive.

Iteration is used instead of Recursion where ptssiWhen sub trees are
skipped, the code sets n&tartandEndrange within the tree and just re-
iterates instead of re-calls.

The code is reordered such that the test on threrdunode can be skipped
entirely if the current node is known to be locateal far from the test
position.

Ordering the priority queue is delayed until ifuf. The caller checks if the
gueue is ordered or not. If the queue hasn't bedgred yet, the caller makes
a single pass through the unordered queue tolimdntaximum and sets this
as the first element. An alternative would bedt lseapify once, if this had
not occurred thus far.

When photons are popped off the resulting quews, éine not actually
removed. Doing so would cause the queue to heapifgach removal.
Instead, the queue is treated as an array agalrelaments are processed in
that order. The first element is still the leasstfarthest to sample location)
as expected.

6.4 Original Direct Lights

The focus of this paper is on indirect diffuse tighut the direct diffuse light is
usually a significant contributor to a final lightj solution. Direct lights are handled
in a fairly standard manner. The contribution freath light is calculated per pixel
(texture sample) and added to the lightmap. Tdtgdiare multi sampled in order to
achieve softer shadows and lighting. Lights thatil otherwise be point sources
become surfaces. Recall that ‘soft shadows aomseguence of partial visibility of
an extended light source’ (Hasenfratz et al. 20@)ot light samples start at a
section on the surface of a sphere. Surface liglatg be used as an additional light
type and are simulated like this: All polygons tHascribe the emitting surface are
made into patches. These patches are recursietngded by splitting them with
axis aligned planes until they reach a configuied threshold. The surface light
patches then become smaller spot lights. Theyaligtuse a surface-to-surface
radiosity style lighting equation rather than tbha point or spot light.

Point lights and spot lights are multi sampled bypeyating points on the surface of a
sphere the size of the light. These points magdmerated uniformly, randomly,
uniform with jittering, or with a similar methodlhe larger the light sphere is, the
more samples are required to make the shadows ragpeath. The output texture
resolution may also influence the lighting resa# lighting artifacts may be more
visible on higher resolution output. Lower resmuatoutput has the effect of blurring

14

light samples together reducing the light sampkesalg. A quick preview with soft
shadows may require 25 samples per light, butifgir resolution, final quality, 150
to 300 samples may be required for smaller ancetdrghts respectivelyFigure 6
shows soft shadows cast by a spot light.

Fig. 6. A soft shadow cast from a (direct) spot lighteTlight source is positioned
above the floating table. Notice the shadow pemambpears wider at different
locations, particularly further from the light scar

6.5 Ray tracing

Whenray tracingis referred to in this paper, it is not about tfaglitional method of
tracing a ray through a screen pixel to the scépects, with shadow ray tests back to
light sources. Instead, it is simply referringesting line segments for point-to-point
visibility, or first hit results. Althoughaysare frequently referred tmfinite rays are
almost never used. Line segments that represeitéd logical rays are used instead.
Line segments limit the test scope to the sceres sizsmaller local space.
Additionally, precomputation can accelerate sonieutations involving line
segments.

Implementing ray tracing techniques in code inw@doforce manner is relatively
simple, though completely impractical. Acceleratrnethods and structures are thus
essential for feasible operation. Such metho@srgdt to minimize the number of
objects and polygons considered for testing. 8ires are used to group objects,
divide space, or store relationships so that téstged to specific locations in the
scene, may be performed efficiently.

6.5.1 Potential Test Objects

A scene is usually a collection of many objectbie3e objects may be referenced by,
or stored in high level entities such as regioosps or cells. The objects in this

15

implementation are effectively polygon soups ang eantain up to 65 thousand
individual polygons each. Although objects mayalq@lygon soups, connected
surfaces and non-intersecting geometry produceieffi output with fewer artefacts.

In order to reduce the number of tests performely, the regions, objects and
polygons potentially intersecting the test are aered. To cull whole regions,
various high level structures, or look up tableswa®l from them, may be used. To
reduce the number of objects tested, an axis-oothalgshallow BSP tree is used to
store object references. The object’s boundingibased to classify the object
within this structure. As the scene or region sszenown, a BSP is created to a fixed
depth, simply partitioning the region into a seeqgtial size voxels. Objects are
inserted into this structure, as if dropped intthig and fall through to be stored in the
leaves. A single object may be referenced multiphes within the tree. This BSP
could have been constructed in a number of difteretys, and other structures could
have alternatively been used. This particularcstme is simple to implement and
provides excellent query performance. As descriagt, a convex hull is
constructed that bounds all paths between a lgintce and surface. This hull is
tested with the BSP to produce a reduced set etcthjo ray-test.

A single mesh object may be stored in up to two 8®Re for opaque polygons, the
other for transparent or translucent polygons. dpeque set is always tested first as
it is more efficient to do so, and if a hit occtws an occlusion test, occlusion is
guaranteed, even if other translucent objects walsld have intersected.

6.5.2 Polygon BSP

The purpose of the polygon BSP is to reduce thebeurof line-segment versus
polygon tests. These tests are used to determinetp point visibility between a
light and a receiving surface. Approximately 50P£®U time is spent performing
this function.

The top levels of the BSP are split by axis-orthwjglanes, dividing the mesh space
into voxels. Avoxelis a volume element, but in this descriptionsisimply a three
dimensional axis aligned box. The remaining natessplit by the planes of
polygons from the mesh. Polygons may be storeahgrievel below the voxel
subdivision, not just in the leaves. A similar B&Ricture is described by Jim Arvo
in his paper “Linear-Time Voxel Walking for OctréegArvo 1988). Refer tdigure

7 for a visualization of the axis-orthogonal portiminthe BSP tree. This type of tree
can be constructed quickly, and traversal provéxettaster than other related tree
structures. Polygon descriptions are stored irirgi The polygons are stored as
triangles in the final implementation, but n-gonsuhd be efficient for meshes mostly
comprised of flat quads. Polygons are stored asdiwwensional edge planes, and a
three-dimensional face plane, for fast point inygoh and line segment testing.

16

PR

Fig. 7. BSP generated from coffee machine model. Ordyalp-level axis aligned
(voxel style) portion of the BSP is shown. Furtdewn the tree, the mesh polygons
are used to create hyperplanes.

Here is the pseudo code for BSP construction

Function Initialize
Add all polygons to a single node.
Find the axis aligned bounding box of the node.
Call Function SplitByAxis

Function SplitByAxis
boxDelta = boxMax - boxMin
axisSet = boxDelta component indices sorted frageldo small.
If current tree depth < depthLimit
AND number of polys in node > min polys in node
Forindex O to 3
Use the next axis index from axisSet and makeitisgl|
plane and bounding boxes for each side
Split the node polygons into two groups by testing
with box bounds, not just the split plane
numSpanned = numFront + numBack - numOriginal
fraction = numSpanned / numOriginal
If fraction > fractionThreshold (30% works well)
Don’t accept this split and continue
Else
Accept this split and break
If none of the 3 axes were accepted

17

Call function SplitByPolyPlane
Create two new nodes
Put polygon groups into the two new nodes
Remove contents from original node
Call function SplitByAxis
Else
Call function SplitByPolyPlane

Function SplitByPolyPlane
Find best (least cost) split plane from poly set
Split poly set using plane and reasonable sizdapsi
For each of the two potential children
If num polys on this side of plane >0

Create child node

Fill node with polys

Call function SplitByPolyPlane

The function to find the best polygon splitting méaproved to be very difficult to
make worthwhile. Obvious choices are to find apléhat minimizes splitting, or
creates better balancing. None of these choicesrabinations consistently helps
performance, though they can dramatically affest 8ize or tree depth. Creating an
optimal BSP for traversal speed is very difficultot only could early, apparently
good split choices prove to be bad later duringstraugtion, but the cost of traversing
the tree changes at different points. For exantpéefirst few levels of the tree cull
large areas of the test space, but later levelsaostymore than just testing the node
contents. In addition, the configuration of polpggeometry and rays may create
inefficient situations. For example, if a flat taiegular surface was tessellated into
many triangles for some reason, it may be bettdrat the polygons be placed in one
node, rather than divide the polygons into moreasodf the node is rejected early in
the test, then many polygons are culled at oncewener, if the node was
consistently encountered, early on, many polygoayg be tested for no effect. In the
latter case, it would have been better to splitnibee contents into more nodes. The
fact that tree levels closer to the root are likgeals (forcing the mesh to be divided
efficiently into chunks early on) greatly easesriésponsibility for later levels to be
optimal.

Traversal of the BSP tree is fairly standard. &dyeunderstanding of BSP traversal
and some optimisations were learned from Havrah éHavran et al. 1998). A few
optimizations are worth noting:
Nodes that have axis aligned planes are handlazldiye Distance to axis-
plane tests are performed without the dot produ¢hen the test line segment
is split, the mid point calculation is differentrfaxis and arbitrary planes.
Reciprocal absolute line segment components aregicelated to eliminate a
divide in that case.
The function calls itself recursively rather thasing an explicit stack. This
proves to be faster on Intel based PCs but shatltenconsidered optimal for
all machines.
The traversal uses iteration if possible and oebursion when necessary. If
the line segment is not split and no new variablesrequired, the function

18

can repeat using a loop, merely swapping localesauch as current node or
test segment end points.

Test information is stored in a structure and p&sseone parameter,
minimizing the number of parameters pushed for éacbtion call.

If the line segment is entirely on either sideldd plane, it is passed in its
entirety to the next test. This prevents the nachjpfrom drifting outside the
original line segment and compromising stability.

Most traversal performance is gained from skipng trees beyond the
range of the search, and by trimming the testdegment whenever it
intersects a plane. This is standard behavioua B&P traversal routine.

Here are some other traversal optimizations thaeweed, but proved inefficient:
Instead of passing the line segment test as twgemts, and calculating the
mid point if split, pass the line segment as Mid &Bax normalized times.
This sounds like a good idea because it removeshithgoint calculation, but
instead, there is a higher cost for non-axis aligolanes. If the tree only held
axis aligned planes, this may be the preferred atkth
A large number of configurations and reorderingade were tried including:
Unrolling, using indices instead of conditions, mmizing code at the expense
of increased recursion, front to back traversahefline segment, careful and
unchecked mid point calculation.

When a node containing polygons is intersectedhalpolygons at that node are
tested with the line segment. This test will tarate early if any of the polygons are
hit. The mid-point calculated by the node planeasuseful here because the
polygons stored in the node do not lie preciselyh@nnode plane. They lie, at any
orientation, within an epsilon distance of the nptee.

6.5.3 BSP Epsilons

Epsilons are relatively small numerical values usecbntrol an error margin.
Epsilons are most commonly used to preserve diglplarticularly when working
with floating point numbers where precision is lkied and slides up and down the
number range. The BSP code makes extensive ua® @&psilon values, with a
couple more for less critical use. Here is adfdihe epsilons used:
Major:
- Polygons are classified during tree constructiobeasg in front, behind, on or
spanning a hyper plane. This classification rautises aonstruction
epsilon. This epsilon is critical for a) stabiliythe construction phase, b)
number of nodes generated for the tree. This@psiuses the hyperplanes to
have a thickness, otherwise they would be infigitain.
During tree traversal, the current line segmentdst shape) is classified as in
front, behind, or spanning the current node’s hplagre. Atestepsilon is
used here. This epsilon must be larger thardmstructionepsilon as it has
to accommodate for thaick planes use during the construction phase and any
error that may be introduced by traversal calcoresi
Minor:
Axis splits cause polygons to be classified agdinstbounding boxes. Any
polygon that is at least partially in a box is slfied as intersecting, and is

19

stored in the node represented by that box. Tdmssification function uses a
tiny epsilon for working with floating point values

Polygons are described as if their edges form afgg@aines. The planes are
pushed outward by a tiny margin to overcome flaapoint error and fill any
tiny gaps that may unintentionally exist.

Both the major epsilons described above are atatiimportance to the efficiency of
the BSP. Understanding the role played by thesgogs allows them to be tweaked
to provide a significant performance increase. e-lge some extreme examples: If
the construction epsilon size is larger than theeemesh, the whole mesh will fit

into a single node and every single polygon wiltésted with each traversal. On the
other extreme, if the epsilon is almost zero, pohgwill split others in the set, into a
huge number of tiny fragments, repeatedly trimmiing slivers off each other, as
they reach the limits of floating point precisionhis is particularly observed when
working with arbitrary polygon soups. With tinysons, care must be taken because
a polygon may try to split itself, as its own paimbay not lie close enough to its own
plane, as often occurs with greater than threedgidéygons. Correctly sized epsilons
prevent both these extremes from occurring.

Note that the epsilon values relate to a) the wfiteeasure and dimensions of the
mesh polygons, and b) the size of mesh featuresexample, a mesh that is 0.023
units wide will have an epsilon, perhaps 1000 tigrasaller than a mesh that is 23.0
units wide. Also, if the mesh was 20 units widet, lvad many features at 0.001 units,
it may require smaller epsilons for both constiuttand traversal, to efficiently
partition the mesh.

6.5.3.1 Construction Epsilon

Theconstructionepsilon is necessary so that polygons can beifodasas expected.
Consider a cube, having six faces, with two triaagler face. This mesh should
produce a BSP that has six nodes that form a pghriett or right weighted tree.

This type of tree or sub tree represents a conuéix Buring construction, each face
of the cube becomes a hyperplane for a node. & modhold the two triangles that
form one face of the cube, however the future efdther eight triangles touching this
plane is not as obvious. These triangles mustdssified as if they were entirely in
front or behind, even though their points or edgrestouching the plane. So a
polygons is classified like this:

In front ® Vertices are > +epsilon.
Behind ® Vertices are < -epsilon.
On ® Vertices are > -epsilon and < +epsilon.
Spanned ® Vertices are < -epsilon and > +epsilon.

Notice that only the polygon vertices are considetering classification, not the
polygon plane. Because the plan¢hisk, a polygon may have any orientation and
still be classified asn the plane.

6.5.3.2 Test Epsilon

If the BSP test epsilon is calibrated to be sligkthaller than the distance that sample
points are offset from the surface beneath thelbengficial effect occurs. Recall that
most time is spent in point to point visibility tesy. Since both start and end
locations are not on, but in front of their respexsurfaces, and the test epsilon is
smaller, the source and destination surfaces ater tested. Only potential occluders

20

in between are tested. If the test epsilon wegelathan the sample offset distance,
the source and destination surfaces would alwaysdted even though they could
not be occluders. As surfaces may be highly tieded| this configuration can
significantly increase performance.

6.6 Polygon testing

If the large numbers of scene polygons represantéinvex surfaces, they may be
stored as1-gons(greater than three sided polygons) and testdugvéater efficiency.
Care needs to be taken when mesh data containss)4gat not all the polygon points
lie on the polygon plane (within a reasonable epgil In this case, the polygon
should be tessellated into triangles to ensurelyalotherwise tree construction and
tree traversal epsilon values will require enlargetthat may adversely affect
performance.

6.6.1 Ray vs. Poly

Determining the intersection of a ray and polygooften a two-phase operation.
First, the ray intersects the plane of the polygben that intersection point is tested
to see if it lies inside the polygon. If no eximéormation such as the polygon normal
is precomputed, the fastest ray versus triangtaedesportedly the barycentric style
test described by Mdller and Trumbore (Moéller etl®97). Even compared to
methods with precomputed components this methddnpes well. It has the side
effect of also computing the barycentric coordisatseful for mapping into the
triangle for things like texture or normal sampling slightly faster method for
computing the intersection of a line segment apdlggon, uses the distance of the
two line segment endpoints from the plane, to datetthe normalized time of
intersection. This test can early-out if both aistes are on one side of the plane.
The normalized time is then used to project a pomob the plane andgint in
polygontest is performed.

All kinds of point in polygon tests exist, but ookthe simplest and fastest is to walk
around the edges of the polygon in a clockwise raaand test if the point in
guestion is to the left or right. If the pointist to the right of any edge, then it is not
inside the polygon and the test can exit immedjatéhis method works for all
convex n-gons. Since the point lies on the pldritbepolygon, this method need not
occur in three dimensions, as only the two dimemsmher than the dominant axis of
the face normal are required. A similar methodsuhe edges into planes. A dot
product test determines if the point lies in fronbehind the plane. Once again, this
test need not be performed in 3D. So, insteadooiing three points and a normal to
describe a triangle, two axes (2 bytes) and thdge®are used to describe the
triangle. Each edge is a 2D normal and distaratal(8 floats). The new polygon
description is almost the same size as the origialgon vertices version but now
the test if a point is inside a polygon is just:

if ((edge[i].x * point[ix] + edges[i].y * point[iy]) < edges]i].d) { return false; }

Repeated for each edge of the polygon.

21

As noted by Steve Worley, the only way to simpfiiyther is if the edges were
described as lines with the equation Cx+y=d. Tdges would need to be in
homogenous space and horizontal and vertical oegd need to be special cased.

6.6.2 Edge/Point reordering to improve point-in-poy early-out

Both triangles and n-gons can have their edgeslieeed to accelerate point in poly
testing (Green et al. 1993). The idea is to batedoolygon with a rectangle then
test how each edge would cut away the remainingespatside the polygon. The
method for n-gons and triangles is a little differehough conceptually the same.
Imagine if the polygon was an octagon. It wouldbst to test opposite edges first,
rather than just work around the winding. Aftee fivst four opposite sides had been
tested, most (space) culling has occurred and yr@at likely achieved.
Experiments with triangle edge reordering showdd33% speed increase, for the
process using heavy point in poly testing. Aspgrecomputation time is low and the
run time improvement always positive or negligililes optimization may always be
worth adding. The implementation described in f@per does not use explicit
bounding rectangles on individual triangles, bt vloxel-like subdivision within the
BSP is believed to create a similarity, causing thethod to work.

6.6.3 Translucent textures

When testing polygons that have a translucentamsparent texture, care must be
taken to prevent neighboring polygons that shadeealye from being redundantly
tested, causing extra filtering along the sharegeedrhis problem can be overcome
by recording the intersection time. If anotherddturs on a translucent polygon at
the exact same time, then it is most likely to Ishared edge and can be ignored
(assuming polygons are not layered and coplanar).

6.6.4 Coplanar polygons

Polygons on the same plane with opposite normals@metimes used to simulated

double sided, thin objects such as plant leavém bRck facing polygon to a ray test
can be biased so it is not detected before the fammg polygon. If this is not done,

coplanar polygons may interfere when sampling nésroa a surface.

6.7 Lighting

A simple lighting model is used by this implemerat Direct lights use a lighting
equation similar to that of the DirectX and Openf&ed function pipelines. Surface
lights andindirect lights use approximations of the radiosity forrotta. The

intention is to rapidly produce a nice looking ae@dresentative, though not
necessarily accurate lighting result. Other m@@ieate lighting equations may be
used for both direct and so called indirect lightéie output of this implementation is
a 24bit texture that is modulated or 2x modulatét tihe base diffuse texture(s). As
the result is a diffuse texture with shadow andtligplor information, specular and
other effect lighting is added afterward for impedwealism.

22

6.7.1 Approximate surface light equation

Surface lights and Indirect lights both use equegtitthat approximate the energy
transfer between surfaces and are similar to tthesay form factor. Refer tbgure
8 and for a simple diagram of the lighting configioa.

cosAcosB

P " visibility
o < +biasArea/

Eq 1: SurfaceandIndirect Light

Visibility is determined by opaque occluders arahsiucent media. It is typically
just 0 or 1, but may be a RGB filter in the rangk for each color channel.

Equation 1represents light attenuation. The source lighdrcand intensity is
already taking into account the source emitter affsct. As the lighting is
calculated per texel, energy calculations and \itsiiesting are approximated by
points and ray tests with relative areas introdudoedonsistency.

The radiosity form factor represents the proporobenergy leaving one patch and
received by another patclrigure 9 Shows a point to area form factor thats has an
interesting geometric property. The form factothis area of the projection of patch
k, projected onto a hemisphere centered at |, phejected orthogonally down onto a
circle.

Surface ares light diagram.

Patch A,
Source
emitting
surface

Area A

Angle &

T
dist D Occluder

Angle B
Patch B
Receiving
Area B surface

23

Fig. 8 This diagram shows the configuration of emittangl receiving patches. In
the described implementation, the emitter may B&ect Surface Lightor aVirtual
Indirect Light

Radiosity Form Factor
Contribution of patch j to patch k

coz By cos gy, day,
FdAj,dAk -

Tyl

Fig. 9 This diagram shows how surface areas influench ether, as if a patch is
projected through a hemisphere and dropped onisca d

Equation 1 uses ararea biasto compensate for the fact that area light souaces
simulated by point sources. As described eatheght spot artifacts will appear
close to point sources unless correcteayjure 10 demonstrates the numerical effect
of the area bias in the lighting equatidfigure 2 showed the visual effect.

1
1+

Fo=— £ =
e

R ¥ Fu Lo ke

Distance
Fig. 10 The effect of tharea bias The extreme intensity near to the light sousce i
effectively clipped back with little effect elsewlee A bias of 1 is shown in this
example.

24

6.8 Color Correction and Output

When light sampling is complete, the color samphest be converted into a format
suitable for rendering via texture mapping and w&aon a monitor. The color
samples are 32bit float per color channel, theYlvalconverted to 8bit unsigned
integer per color channel. Converting number rangehis way is often called
quantizing.

If the sample values were between zero and oneaimeersion would simply be a
matter of scaling to the new number range and d¢pgrecision. The samples actually
range from zero to infinity, or at least some lapgsitive number. Because of this
unknown upper bound, the values must be clippedatidnally adjusted in some
way.

The human eye and brain combination is capableaxfgnizing millions of levels of
brightness, from the darkness of an overcast nigtihe blinding light of the sun on a
clear day. Computer video cards typically allowotor value between 0 and 255.
Monitors often have an analog color range, butaray achieve the darkness of a
blank screen and the brightness of a fully lit pokee to the limitation of the CRT,
LCD or other display technology being used.

If two lights shone on a single surface, a verglirimagenta (red, blue) and an
extremely bright cyan (green, blue), the surfaceldde saturated in color across all
components. Since the cyan light was brightevorild be preferable if the final
color was not clipped to white (full bright), but@ved the hue of that intense color.
The following algorithms describe the color clipgivia normalization and color
clipping via saturation:

Clip Normalize — Preserves Hue
max = largest color component
if max >1.0
for each color component
color = color / max

Clip Saturate — Just clips components, often resyin white
for each color component
if color > 1.0
color=1.0

Lights vary in intensity and the human eye autooadlif adjusts to the lighting
situation in a short period of time. Photographd emages cannot capture exactly
what the eye would see, but the controls on can&las adjustment to make the
image at least look representative. One such aloistexposurgElias 2003).
Exposure adjustment has the effect of changingntieasity of bright and dark areas
in the image.Equation 2 describes the adjustment operatidigure 11 shows a
comparison between the original and two settingsxpbsure adjustment.

25

Fig 11 Exposure adjustment. Left set€e0.5, Right set t&=2.0, and Middle
original image without adjustment. Notice the @ms hot spots in the non-adjusted
middle image where intensity is clipped.

brightness=1- e "o" X

Eq 2. Exposure equatiorK is a correction constant.

As the exposure adjustment works on the origingth fpirecision color values, it must
be performed before color quantizing. The finapdbefore outputting the color data
is to combine multiple texture samples that wekenaor anti-aliasing. This step is
performed after quantizing in order to soften higintrast edges as part of the anti-
aliasing effect. For example, if two over-brightsples were combined, the result
would still be over-bright, and will be clipped foo tangible effect. Samples that
were already clipped will merge to produce bettdbetween values.

6.9 Lightmap Texture packing

Texture pagesgypically represent power of two sized, possilgjyare textures that are
efficient or are the required dimensions for vid@odware. Sizes such as 256x256 or
512x512 are common. Many such texture pages magduered to store the lighting
result of a scene.

Lightmaps may be generated from individual polyggmsjected neighboring
polygons, or complex parameterisgthrtsof polygons. Whichever way lightmaps
were created, they will be numerous, and will kkieve complex shapes. The
lightmaps must be packed into the smallest numbexture pages to make efficient
use of limited memaory.

Mip mapping has the effect of blurring nearby texelgether at every subsequent
level, eventually leading to a 1x1 texture thaepftepresents the average color of the
whole texture. When different textures are padkegether into the one texture page,
the average, and even the neighboring texel cal@®ften unrelated. Artifacts that
show discoloration become visible, with increadmguency as lower level mip

maps are selected. In an effort to reduce thiblpmo, unused texture space may be
filled with texels relating to the lightmap or extoorder texels may be added. Many
software programs that use lightmaps only allowenerate the top few mip levels.

Textures need to be optimized for cache efficienédideo memory is limited, and the
cost of swapping textures in and out of video memor chip memory is high.

26

Textures near each other, that will likely be reedeogether, should be packed
together. The classification of whaaris can be implemented in various ways.
Lightmaps that are classified as near each othebaassigned a grouping identifier
that will cause them to be packed together if gmesi
Examples of grouping classifications are:

The object identifier or index in the scene set.

A room orcell that may define parts of the scene.

A octree division of the scene into blocks.

6.9.1 Box sorting

Optimally sorting boxes and other shapes is knasva hard problem because
depending on early sort operations, that may apjpda& good, later ones are
effected, perhaps negatively. This is true for B8Rstruction. Luckily there are
simple alternatives to find the ultimate solutiand these simple approximations
yield excellent results.

Boxes are stored in groups, so the sort processswar a group of boxes that should
be packed together. Boxes are sorted from largentdl. Height and width form the
major and minor sort keys, so that same height $axe still ordered based on width.
Identical size boxes have no defined order. Tka id to create a setfoéeboxes,
that are sorted small to large, and place therigiptboxes into theseee boxes.

When unused space remains, it is split into moseb@nd each of these is added to
thefreelist. If there are no free boxes available, a haghsize box is created,
logically representing a new texture page. The¥ahg algorithm describes the
process.

Add lightmap bounding boxes tonait list, where they wait to be placed.
Sort allwait boxes from large to small, by height then width.
While boxes remain in theait list
Find afree box that is just big enough to store thigit box.
(Free boxes are kept sorted from small to large.)
If there are ndreeboxes, a new textuggageis created at the
maximum texture size. This new page has one izdlfsee box, and it
is added to th&eelist.
The first box in the free list that is large enouglhold a waiting box
is used.
Calculate up to two smaller boxes from unused (lhsusshaped)
space around the placed box, and add thesé&¢e bst’
Call the empty texture space reclaim function.
Free unusettee boxes
Call the unused texture space reduction function.

6.9.2 Unused texture space reduction

When texture pages are less than half full, amapétion can be attempted that will
create two, quarter size textures and pack thehe pfocess may continue
recursively for several iterations before limit€lsuas the minimum texture size is
met, or lightmaps use most of the texture pageespAdexture page is considered
half empty when less than half the space measwegtally is used. When this
occurs, it is already known that the height oftddéest box is less than half the page

27

Height. If the width of widest box is also lesaihhalf the width of the page, then the
page is a candidate for reduction. Two quarter peges are created and added to a
freelist. The contents of the page are run throughstime algorithm described
above so that the boxes are placed once again.

5.9.3 Empty texture space reclamation

When a lightmap is placed, it uses up a rectanglaleo its size, but the lightmap
image may beéhin diagona] hollow, or acomplex conveghape, causing much
texture space to be wasted. At this point in ttoe@ss, a space reclaiming function
may be called in an attempt to locate (rectangiebee space and add them to the
freelist so they may be used. Many complex algoritiomdd be developed to locate
this space. Many other methods could have beahtoseduce this situation, such
as:

Splitting convex lightmaps during their construatiphase. This would create

smaller, convex shapes, but increase the numisashs and discontinuities

in the lightmaps.

Rotating lightmaps from diagonal to horizontal ertical alignment, or to fit

arbitrarily shaped free space. Although diagohapgs may beorrected

and other shapes may benefit from improved fittheggtion causes variation

in the texture axes, highlighting seams.

Both these methods add complexity, extra work aaregate new artifacts, even if
they may increase texture space efficiency. deisatable whether these methods are
even worthwhile, as discussed later.

The chosen method simply samples the lightmapgatae intervals, such as up to 8
times in width and 8 times in height, and attempt8ood fill rectangles. If a seed
position was not flagged asnpty(by flagging with a NaN, or other Id), a rectanigle
grown, one row or column at a time in each of fdwections until it is blocked. If
the rectangle is larger than some threshold,atided to théreelist and available for
use by other lightmaps.

Tests showed that increasing and decreasing tHeuaoation parameters, though
reclaiming more or less space, did not reduce timeber of texture pages used. See
figure 12 for some examples. Attempting to reclaim morecegakes lots more time,
but pays rapidly diminishing returns. The reasarthis is that number of texture
pages is largely determined by the numbdange lightmaps. The smaller lightmaps
merely fill out the wasted space left by the langes. The large lightmaps may be
efficient, with most of their space filled with w@icolor samples, or inefficient, with
large quantities of flagged invalid samples. Tiefficient cases are usuahypllow,
diagonalor concave Since the flood fill method predominantly reahai square
shapes, this is not a problem, because horizonthVertical rectangular shaped
lightmaps are already packed well by the originathod, and contribute little to the
number of texture pages used. The inefficientsase readily filled with boxes and
their space reclaimed. Note that this method wbdst when lightmap shapes are
mostly homeomorphic to discs. If they were alt,dgample, identical size triangles,
they would not pack at all, and reclaimed spacelevcemain unused. There are
potential cases that would hinder the regular sarfipbd fill method. If a lightmap
looked like a grid that just happens to lie in petfalignment with the sample pattern,

28

it may contain plenty of free space, but none wauld be discovered by sampling.
This pathological case is unlikely to happen, dnddid occur regularly, a possible
solution is to simply jitter the regular samplemgsiby up to half their step size.

Fig. 12 Left, Middle and Right show small to large amounitseclaimed space respectively. In
these images, Green (Light Gray in B&W) is reclainspace, Red (Dark Gray in B&W) is unused
space and lightmaps fill the used space. Notedtftlaugh lightmaps are shuffled around, no more or
less texture pages were used, even in these thireene examples.

6.9.4 Box sorting performance optimizations

When a naive box packing process is run on tehsidreds of thousands of
lightmaps, it may start to slow down. The QuickSdgorithm was used to sawiait
boxes. A fast insertion sort maintains freee box list. A block memory allocator
rapidly feeds the process with néwe boxes. These tools significantly reduce the
packing time that would otherwise occur with a brigrce implementation.

6.10 Image Improvement Techniques

6.10.1 Mutli Sampling

Mutli sampling lights by turning point sources irgorfaces has some anti aliasing
effect, but is only part of the solution. Variquarts of a scene will not be classified
such that a soft shadow will render there.

6.10.2 Anti-aliasing

The two main types of anti-aliasing experimentethwn this implementation are

multi sampling and super sampling. Multi samplusgs a table of offsets such as the
corner and center points of a texel. These esmaptes are then averaged, possibly
with weighting. Super sampling merely rendersghér resolution output, typically

2x or 4x some size, then filters the result dovnquick and effective alternative is to
sample texel corners, as this logically only adds extra row and column of unique
sample points. With this method, the samples atddges of each texel are shared
with its neighbours so they really don’'t need tacbeputed at all. The processing
cost is tiny and the result is adequate for ouppses.

Unfortunately all types of anti-aliasing tend toluee the effectiveness of correcting
texel samples located inside solid space (discussedin this section). This occurs

29

simply because multiple correct samples are mei@edoduce an incorrect result. It
is not possible to assume that lighter or darkbrsamples are more correct than each
other, as it may be light or shadow that is blegdimo the wrong place.

6.10.3 Detection and correction or samples inside solid space

Often, near walls, or places where two surfaced,neeel samples are generated
such that they bleed the wrong color. For exangleall made from two opposite
facing polygons, with no thickness, may divideaoflthat is lit on one side, but not
on the other. Depending on where the texel samplight or darkness may bleed
from the other side of the wall. To correct tmslls, as in real life should be
modeled with volume. The sample texel size sheelite to the feature size of the
model geometry. If the model is tiny or has irdteedetails such as thin pipes, a
higher resolution texel is required.

Another solution is to use CSG (Computational SG&bmetry) methods and turn the
scene meshes intcs&in All overlapping and intersecting polygons arsoteed into

a skin around the solid space with hidden and jparks of the mesh removed. This is
a difficult process to make robust, introduces maeny mesh faces, modifies the
model geometry, and still doesn’t help in casesre/objects are stacked on each
other without merging.

A generic solution was found that works with polgggoups. The method is stable
even when meshes contain triangles that interaeeoorly shaped and do not form
a manifold style surface. However meshes thatatormiosed manifold style surfaces
that do not obviously intersect produce much be#sults. This method tries to
determine if a texel sample point is inside sopdce, and if so, correct it by shifting
the sample point up to one texel width away. Rhetsample point is elevated
slightly away from the surface, via its normaltloe polygon face normal. This is a
good practice because it can prevent accidentis$iool with the owning face, as well
as facilitate other optimizations.

A set of tiny rays are cast from this point. O#lto 10 rays are necessary for good
results. If any of the rays hit a back face, ttlentexel sample is inside solid space,
otherwise it is okay. If the texel sample pointsvirasolid space, a set of position
offsets, ordered from near to far relative the ioagsample point, are tested. When
none of the shift attempts succeed, the sampld oleft unmodified, because it is
likely to be well inside solid space and remainatived. Sedigure 13 for before
and after results. This method runs reasonabtyafag exits early when the sample
point is already valid, which is most of the tingethe output resolution is increased.
The tiny ray tests are not very expensive as omsiyall portion of the scene is
considered for each test. It may be best if objdwt rest on top of each other are
made to intersect each other slightly, in ordegrieure that sample points between
them are detected assolid.

30

Fig. 13 Texel sample points inside solid space. Left: Cbleeding from samples located in solid
space. RightBadsample points detected and corrected, by shiftregvalid nearby location.

6.10.4 Texture seam reduction

Whether textures are generated from individuahgies, axis projections, or a
minimal distortion texture atlas (Lévy et al. 200&hen the textures meet up along a
polygon edge, they may display an artifact calléeixéure seam. Refer figure 13

for examples of this.

Fig. 14 Texture seams. Several seams are visible. Lefifikared, right is bilinear filtered. Both
sets show curved surfaces with different dominaesanapped with low-resolution texture and
rendered with bilinear filtering

The following are some factors that contributehie visibility of seams:
Texel orientationThe two dimensional U and V directions may not be
identical between polygons, particularly if theygn normals have different
dominant axes (such as one major in +X and ther otlagor in —Z).

31

Texel Size and shap&exels are often aligned with two of the workdsaand
look like Lego™, but because they are mapped toesigolygons, the final
shape of the texel is distorted. On a single facgay be skewed into a
diamond shape. Across several smoothed facesyii@ok quite unusual. If
polygons use different texture resolutions, thentéxels on either side of the
edge will be of different size.

Texel origin relative to vertex positiornless texel origins are snapped to
vertex positions (introducing a bunch of other eguthe texture axes don’t
line up, or line up along one shared axis only.

Texel color If the texture color along a seam is of hightcast, the seam will
be much more visible.

Texel neighborswhen bilinear filtering is used, four texels asmpled in
vertical and horizontal directions. If the neighibg set of colors is not
matched across the edge boundary, and does notexttéeast one texel,
seams will appear.

Mip maps When mip mapping is used, neighboring texelgecarsively
filtered down. Mip mapping of packed lightmaps s@sicompletely unrelated
colors to be merged and displayed. Mip mappingiwia single lightmap
merges colors such that they may no longer matein ¢éalge neighbors.
Bilinear filtering. Bilinear filtering exaggerates the seams irgtilby most of
the above factors.

Texture distortion is inevitable when a curved aoefis projected onto a plane, or
flattened in some way. This is the classic maperakroblem. The texture seam
issue is very much related, as curved surfacesn\flattened must join up, even if the
entire surface is flattened into a single chart.

Surfaces that are not curved do not pose a proladsrsamples along polygon edge
boundaries may simply be sampled beyond the boyratdo the next shared surface.
If there is no shared surface, the sample poinbeapushed back inside the original
surface polygons. Extizordersamples created to improve bilinear filtering apm
mapping may be handled in a similar manner, slgiftinsampling outside, rather than
by extrapolating existing samples.

7 Optimizations

7.1 Caching

7.1.1 Last hit poly/object caching

It is possible to take advantage of coherenceifbility testing. After all, if a

visibility test for one sample intersected an odely there is a reasonable chance that
the next sample may also be occluded by the safeetadr polygon. Both these

items are cached, the last polygon that was hit,the object owning that polygon.
The visibility ray test simply checks the cachedlygon first. If that polygon was not
hit, the cached object is tested first. If thexstill no hit, the cache is invalidated and
the test continues without the benefit of the cadBeperiments showed that allowing
the cache to have a lifetime of up to three missed increase performance, but

32

more experiments would be required to check ifehgrconsistent benefit. Caching
can provide a significant performance increase.estimate of 30% is not
unreasonable, with better performance at highelugen and when occluders are
regularly close to light sources.

7.1.2 Potential occluder object test sets

As a lightmap may consist of multiple polygons, andght may consist of multiple
samples, it can be worthwhile bounding these hidggnezl objects and caching some
information about their relationship. If both tight source and the destination
surface have bounding boxes, a convex hull carob®gated that bounds all light
rays that could possibly be considered betweetwvtbeentities. This hull can be used
to collect a list of objects that are potentialladers, and this reduced set of objects
may be reused for all ray tests with between thiet land the destination object or
surface. The cost of computing the bounding rsuimall and amortized over the
(usually) numerous ray tests. Since the two objat boxes, the bounding hull may
be computed directly, without the need for genalgorithms like QuickHull (Eddy
1977).

7.1.3 Redundant poly tests in the BSP

Polygon references are stored in the BSP multipled. This occurs because the
polygons are not physically split, but are logigalplit, so a hyperplane dividing a
single polygon merely causes two references tednge polygon to be stored. This
means that botparts of the polygon may be tested at different timkss possible to
flag the polygons in a way that prevents reduntesting. Enabling or disabling this
cache proved to provide a tiny speed increase@edse. The benefit is only
realized when lots of redundant testing occurse étfiectiveness is highly dependant
on the BSP tree construction method, configuratowl, the mesh geometry. With
highly optimizedpoint in polytesting and the relatively expensive cost of ramdo
memory access to a flag or cache table, this patespeed-up should be attempted
with care.

7.1.4 Precalculated lighting values and constants

Some parts of the lighting equations may be preutaied. Anything that is constant
should be calculated and stored. Some of the pastant parts of the lighting
equation that are reused should be stored locabgly sitthe compiler. If high
precision is not required, storing reciprocals andtiplying can reduce the number
of divisions. Along that line, modern PC CPUs hkowe precision floating point
instructions that can speed up reciprocal dividessgjuare roots. Some equations
can be merely reordered to make better use of preated constants. The spot light
specific code benefited from this, with divisiorspletely removed.

7.2 Early outs

The fastest code is the code not executed. Thereaaious tests, and parts of the
process where the result is logically determinddresit is exhaustively computed.
Here are some:
Light behind surfaceSimply test if the incident light would strikeetliront
face of the texel sample. This is a dot produstt tteat is already part of the
lighting equation.

33

Insignificant light Like other types of radiation, light decays oaitenuated
as the distance from the source increases. Tdle/ fpart here is determining
when the light energy is no longer significant @ad be ignored without
being noticed. An effective way to determine # fight is significant, is to
compare with aninimum energy thresholhd gpercentage of emitted light
threshold which ever is larger.

This early out occurs before the (relatively slawgjbility test and can fire up
to 40% of the time (with 5-30% more common), butighly dependant on
the number, size, and position of lights. Rementiatrthis lighting method
relies on using large numbers of (often tiny) lggtgo the conditions for
culling are ideal.

The values found to be reasonable in the descitbpl&mentation were:
Fixed Light Threshold = 0.04% of saturation, or 0265 for 8bit final color
components.

Emitted Light Threshold = 0.1% of source energyQ.dr* Lightintensity.
These values can be adjusted for increased speedtput accuracy. In the
described implementation, the visual differenceutput was
indistinguishable through a range of extreme tegtsle the performance
increased significantly.

If the thresholds are set too high, a scene magesuy become dark as lights
are culled too early. If the thresholds are setivav, no performance increase
will be realized. The combination of the fixed amethtive threshold, as
described, greatly reduces the chance of suddeahastifacts due to changed
lighting conditions.

Light source too far from destination object otlipmap Lightmaps and
objects have simple bounding volumes such as bmixggheres. If the closest
point on the bounding volume is further from trghtithan a threshold, then
that light’s contribution is insignificant, and alid be ignored. The threshold
value is calculated in a similar manner to ithegnificant lighttest described
earlier. The threshold should be conservativey eriting early if the light is
definitely too far away to consider.

High level scene informatiorHigh level scene information such as Cell &
Portal connections, Rooms, Object hierarchies asililty tables should be
used whenever they are available, and if their kadge could be coded as a
early out test. For example, a scene with Cellogtd descriptions may have
a Cell to Cell visibility table. That table can sienply accessed to determine,
for example, that a light inside Cell A could naisgibly be seen in Cell B.

Here are some non-early outs:

- Back face of polygon. It may seem intuitive to bé&ace cull as you would
with normal rendering, but if the scene repressalisl objects and the test is
for occlusion only, then checking for back facea isaste of time. It is best
to treat polygons as double sided as long as treg@aque.

BSP Traversal. When traversing a BSP for the gotpose of visibility
testing (shadow testing), there is no need to llyidraverse a ray or line
segment from start to end. There is also no neeelay testing polygon
contents if there is a possibility the polygons Imilge intersected by the test.
The idea is to test the polygon contents storaétarBSP tree as efficiently as
possibly, not using naive or generic ray testiagérsal methods which would

34

provide otherwise useful things suchfiast hit results. The intention is to exit
as soon as any occluder is detected.

8 Future extensions

1. The technique presented in this paper could beemehted in hardware for
both view dependant and view independent renderirgglay’s programmable
GPUs could handle the most time consuming patt@ptocess: lighting and
visibility testing. A pixel shader could computer pixel lighting values and
add them to a destination buffer. A stencil ordsiva buffer could be used to
perform visibility testing between lights and scge®metry.

2. The movie ‘Final Fantasy: The Spirits Within’ usedny laboriously hand
placed fake lights to simulate global illuminati@hough it did use a photon
map for caustics) (Christensen 2001). The patttisfprocess used to identify
and create potential indirect light sources maylyhas implemented as a
software plug-in for other renderers. This colgdist artists, or relieve them
entirely of the task of placing many fake lightsstmulate realistic indirect
light. First, a (relatively small) photon map mnstructed from the scene
geometry and light sources. An arbitrary numbefiaké lights are then
quickly created and passed back to the applic&tioacceptance or
modification by an artist.

3. Currently the texture seam issue is not resolvedjaaktely, so this area needs
more work. Recent research on automatic textdas abnstruction is yet to
show an efficient, robust solution to texture seamoval, beyond the
significant reductions achieved by the various rmodth Many of the
parameterization algorithms still introduce sigrafnt texture distortion
making them unsuitable for our use.

35

References

Arvo, Jim. “Linear-Time Voxel Walking for OctreesRay Tracing News 1(12), March 1988

Arvo, James; Kirk, David. “Particle Transport amobige Synthesis”. In Computer Graphics
SIGGRAPH 90 Conference Proceedings, pp 63 — 66.199

Christensen, Per H. “Photon Maps At Square USAft &a“Faster Photon Map Global
lllumination”. From SIGGRAPH Course#38 slides. 200

Eddy, W. F. “A new convex hull algorithm for plargets”. ACM Transactions on
Mathematical Software. pp398-403, 411-412. 1977

Elias, Hugo. “Exposurehittp://freespace.virgin.net/hugo.elias/graphicsbsyse.htm2003

Goral, Cindy M; Torrance, Kenneth E; Greenberg, &drP; Battaile, Bennett. “Modelling
the Interaction of Light Between Diffuse SurfacesComputer Graphics” In Proceedings
SIGGRAPH 84, volume 18, pp 212--222, ACM Pressy 1984

Green, Chris; Worley, Steve. “Simple, Fast Triarigtersection”. From Ray Tracing News
V6N1, January 1993

Hasenfratz, Jean-Marc; Lapierre, Marc; Holzschdiébolas; Sillion, Francois. “A survey of
Real-Time Soft Shadows Algorithms". In Eurograplfitate of the Art Report. Eurographics.
2003.

Havran,V; Kopal, T; Bittner, J; Zara, J. “Fast rebBSP tree traversal algorithm for
ray tracing”, Journal of Graphics Tools , Decemb@98

Jensen, Henrik Wann; Christensen, Per H; SuykeaskF“A Practical Guide to Global
lllumination using Photon Mapping”. Siggraph 200dutse 38, Los Angeles Aug 2001.

Jensen, Henrik Wann. “Global lllumination Using RilvoMaps”. From Rendering
Techniques, Proceedings df EuroGraphics Workshop on Rendering. pp 21-30.r§jer:
Verlag/Wien. New York. 1996

Keller, Alexander. “Instant Radiosity”. In SIGGRAP} Conference Proceedings, Annula
Conference Series, pp 49-56. 1997

Kopp, Nathan. “Simulating Reflective and Refract@austics in POV-Ray Using a Photon
Map”. http://www.nathan.kopp.com. May 1999.

Lévy, Bruno; Petitjean, Sylvain; Ray, Nicolas; Mati) Jérome. “Least squares conformal
maps for automatic texture atlas generation”. 2002

Moller, Tomas; Trumbore, Ben. “Fast, minimum sta@agy-triangle intersection” Journal of
graphics tools, 2(1) pp 21-28. 1997

Sillion, F. X; Arvo, J. R.; Westin S. H.; Greenbgly P. “A Global lllumination Solution for

General Reflectance Distributions”. In ProceedioSIGGRAPH 91, in Computer Graphics.
pp 187-196. July 1991

36

Appendix A: Sample output

Fig A.1: A test room lit and rendered in real-time by tlescribed technique. Only
the lightmaps are rendered.

37

Appendix B: Early attempts - Described by the autho r

In the past, | had written light mapping tools @se with computer games, that
produced results similar to those seen in the Uifeand Quake™ games. | used
hybrid mixes of ray tracing and radiosity, favoriagnethod of blending high
resolution ray tracedirect light with low resolution radiosity styledirect light.
Although the results looked impressive (at leasbhgared to the competition) | was
unhappy with many parts of the process. The rdgliphase required passing the
scene geometry throughpatato chip cutteto form patches of reasonable size. Form
factor calculation could have been stored in memoag | had 4-10gb of it. The
whole process really needed several CPUs workimarallel to reduce the process
time.

Now, some years later, and even with this new tegten not all problems are solved,
and some new ones are created. Expectationsgirerhgeometry poly count is up,
and smooth surfaces are frequent. | started eestigating Photon Maps and pretty
soon became quite excited by what | was readirfgurriedly implemented a simple
photon mapper and it worked nicely, just as theepampaid. But, and there’s always a
but. | didn't at first realize why no one was doivbat | was trying to do, that is,
produce a final result by directly visualizing thleoton map. The two major
problems with the photon map are:
1) The photons are sampled using random and statisteans and look blotchy.
Filtering is required at the very least in ordarttee results to look acceptable.
2) The edges of polygons, the edge of the scene,&1thpping polygons cause
border artifactswhere the photon energy density is sampled inctiyre
producing either extra bright or extra dark outpepending on the
implementation. Refer tiigure B.1 for a basic border case.
Refer tofigure B.2 shows output illustrating both these issues. Bbtthese
problems do have solutions, such as using moreopkair clipping the geometry to
the sample shape, or using a z-buffer to calcslatiace area. All of these solutions
however, cause a dramatic slowdown and detract fhenelegance of the photon map
technique. Modern ray tracers often use the photap to direct some other indirect
lighting technique, or build an irradiance map vhis sampled as part of an indirect
light contribution process.

38

Fig. B.L: Two photon samples. The photon density sampited border is incorrectly estimated. The
sample size has grown too large while findmgamples. The geometry independent photon map does
not contain knowledge of borders and density céioaanethods are inelegant.

Fig. B.2 An early screen showing direct light via ray tramccombined with indirect light via direct
visualization of the photon map. Notice the exiaak edges and corners caused by incorrect density
estimates. Also notice the splotchy indirect lightise by randomness.

Quite disheartened, | feared | may have to givéheghoton map technique
completely, and looked at various other methodsrielfly investigated spherical
harmonics (Sillion et al. 1991), but it did not @apto be useful to this specific task.

| consider spherical harmonics to be an energgctthce representation compressed
on the surface of a sphere, and may be usefubfoesther, perhaps even real time,
approximate lighting solution.

After browsing a paper on Instant Radiosty (Kell@é®7), | recalled an idea that | had
been thinking about for years and experimented hatflore: Turning indirect light
into direct light sources. My earlier attempts ladldfailed, but | realized | now had
the tools | needed; a photon map to collect emdtsdireflected energy, and a
balanced kd-tree to sample it back into light searc

39

| initially used an accumulation buffer (as Inst&atdiosity does) to test this new
technique, but found that although it producedtifaat free result, the lighting was
bland and low in contrast. Hot spots near lighdésyopeared and areas with little light
became even darker. | called this the ‘chemo’ m@#ince both the good and bad
parts of the solution were removed; the high cattiights, and the artifacts
associated with the virtual light technique.

| tried merely adding light contributions to thetjput, and although this produced
excellent lighting results, the bright spot artttanear the light sources were
unacceptable. Biasing the light source area idigheing equation proved to
effectively remove these artifacts while preseniimg light integrity.

Many more challenges remained. The new technugunms the few lights in a scene
into hundreds or thousands of lights. Accelerativgquantity of light samples
required carefully choosing, implementing and cgunfing various acceleration
structures.

B.1 Optimization

Something that the author has learned about loel lgptimizations, is that they are
highly machine/system dependant, and the rulesgehaver generations of hardware.
For example, current CPUs have high arithmeticquerénce and relatively slow
(non-cached) memory access. Thus techniquesnyalive precomputation or look
up tables for acceleration, should be used withtgrare.

Unfortunately most current CPUs (and GPUSs) redhe& full potential only when
performing a large homogenous process. This leel lparallelism is difficult to take
advantage of without restructuring code (often emtaugly or non intuitive state), or
spending large amounts of time writing and testisgembly code. The best
experience is when the compiler identifies cod¢ ¢bald be optimized with vector
operations and automatically does so. Vector aattiMmanipulation are obvious
candidates for such optimization, but are not abyagrt of a bottle-neck inner loop.
As always, operations likequare rootanddivide consume disproportionate amounts
of clock cycles. Ordering conditional statementaitd branch prediction is useful.
Packing data into minimal structures, aligned immogy at contiguous addresses, is
critical for efficient memory access. Object Oteshmethodology should be used
with care in performance critical areas lest thegoiduce hidden, unnecessary cost.
Imagine if each photon structure was derived frobase object class, allocated with
newand implemented virtual function access to mendlaggi. Thought that may
sound amusing, during the authors working lifehbhe seen commercial code, usually
(but not always) written by enthusiastic junior grammers doing things exactly like
that.

B.2 Strange Discoveries

During development, some unusual discoveries werdennelating to performance.
Further investigation revealed these issues areminthough rarely highlighted.
Calculations involving INF (infinite) and denorm(@ixtremely small) numbers can
approach 1000 clocks of CPU time, or take sevaratited times longer than
expected. NANs will also cause massive slowdowaswill not occur unless there
is an error. The penalty times differ greatly betvw CPU brands and modules such
as the FPU and SSE found on the Pentium 3 and 4CPU

40

Appendix C: The kd-tree

Fig C.1: kd-trees. Unbalanced, Balanced, Stored as HedyDgnamized versions.

The kd-tree used in this implementation is simitathe one described by Jensen.
The structure is a balanced three-dimensional bitree that is stored like an array
and similar to a heap. The index of each elermeplies its location in the tree
without the need for child pointers (such as LefR&ght or Front & Back.) Because
it is balanced, if the last branch in a sub tregdaingle child, that child must be the
Left child as the Right child index is out of rang€hat is why trees constructed this
way are often calledéft balancedbinary trees.) The tree is constructed using a
median spliapproach. The algorithm is @vide and conquermethod that is very
similar to the QuickSort algorithm.

The kd-tree data can be constructed with the roderocated at [0] or at [mid]. If
the root is at [0] then the children are locateduatndex*2+[0,1]. This method could
possibly provide better cache and stack performaifdbe root is at [mid], then
children are located at (endindex+startindex)/24[1 This method allows all
children to be found between thtart andendindices and is the method used by this
implementation.

41

Dynamic kd-tree

Kd-trees are rarely dynamic because they realigie speed from careful
construction, something that cannot occur withteay dynamic data. Exported
mesh data is often near worst-case for a dynamicdedas it does not appear in a
spatially random order at all, thus causing a dyindree to grow in a very
unbalanced fashion. Testing for uniqueness whitkre vertices is also a worst-case
scenario because thesertandFind operations are interleaved. Kd-trees are most
efficient when all data is added, and then theisdmlanced. Search operations may
then be performed in a highly efficient manner.e kKid-tree was dynamized by
adding new data to an array that could be accessadsecond phase within fhad
operation. If data is removed, deleted nodeslaggéd as removed, but not actually
removed from the structure. Periodically the iseebalanced, with the deleted
nodes removed and recently inserted nodes distdoappropriately.

42

Appendix D: Notes on the Polygon BSP

The BSP nodes

The BSP nodes were originally homogenous and me¢eckby indices rather than
pointers. Indices have many benefits such as gy serialization of the structure.
Indices can be shorter than the pointer word sizkiradices can store other flags in
unused bits. Since the BSP contains some nodbsawig aligned planes and others
with arbitrary planes, the axis planes stored uessary data causing memory to be
used less efficiently. Two different node struetiwere created, with different sizes.
Although stored in contigous memory, the nodesaxe referenced with pointers.

An average of 20% of the nodes (range 15-30%)>dsepdanes, and tests showed that
a significant amount of time was lost due to Lewvethe misses. Mixing smaller and
larger nodes improved memory efficiency and incega®cess speed by 9%.

Some other failed BSP optimization attempts were:

- Balanced binary tree. The intention was to corite® size and make
traversal times more consistent. The result wasistently large trees and
consistently longer traversal times. Balanced d¢fas do not help in practice.
Dividing space is more important.

Least cost polygon split planes determined by fangonode balance, split
polygons, or polygons on the plane. None of tlodseces or combinations
consistently produces better than ~2% improved teaéimes thamandom
or first polygonchoices. However, rejecting expecta polygons like >
30% splits may help.

Arbitrary split planes constructed using geometttacsuch as edges and
vertices rather than polygon faces. The resuliveldathat objects like a
sphere could be split into more pieces than thglesisided convex hull that
would otherwise be expected. The traversal cast jpioved to be slower on
average. Adding more split planes can increasé&dlversal cost and must be
done with care.

Tree constructed with only axis aligned planegrdy planes from the
contained polygons. Neither of these methods pirienal when used alone.

Some other potential, but not implemented BSP optimations could be:

- Try to add top level nodes to the tree that arectiffely simple bounding hulls
around (particularly disassociated) bunches of ggom At least one paper
describes a similar method, though the results slddatat it had a positive or
negative effect depending on the mesh/scene. perhanually splitting a
complex object into multiple parts with simple bdsnto be queried as an
earlier test, would be better than attempting tegrated such bounds into the
BSP.

Test fire rays from outside and inside the meshumedthe resulting statistical
information, in some way, when deciding how to ¢or the tree.

When the top levels of the BSP are created initmgementation, bounding
boxes are known, representing the voxel dimensidinsould be nice to pass
convex hulls to polygon-plane splits further dowe tree. As polygon-planes
divide space, the hull must be clipped. Using ihisrmation, better splits
could be found, to divide thepacerather than naively divide trgeometry

43

This method may have the greatest potential,cbutld be done efficiently. In
addition, polygon points/edges could be reordepadally for early-outs
based on this knowledge.

Actually split the polygons, build the tree, théanaw the split polygons away.
This method was tried in an earlier implementatidnee construction may be
slowed by the resulting huge numbers of polygogrfrants and inaccuracy
may be introduced with tiny, sliver polygons.

44

Appendix E: Process performance statistics.

Process test results
These test results were gathered at one pointglthiendevelopment of the process.
They may not accurately represent the current terpial performance of the process.
In addition, some debugging and statistics gatlgezode was enabled in the test
build. The test results are provided for the fwilog reasons:

To compare image quality with different settings.

To compare process time with different settings

To provide rough figures of process efficiency. Bges this technique

require minutes, hours or days to produce usabldts?

Notes on this scene and the test output:

- The tests use the same texture resolution throudhewscene. Each object, or
part of an object could have used a different teggmi for a more efficient
result. For example, the door knobs and tap haratie small features that are
lit poorly. These would greatly benefit from highresolution, while the
ceiling and some bench surfaces could have usedex resolution without
compromising the quality.

The lamp shades covering three of the lights pteséifficult case for the
indirect lights. Many virtual lights are clusteratbund the lamps light source,
on the inside surface of the lamp shade. A latgeber of indirect lights are
required to reduce banding caused by the high sitielight from the lights in
the lamp shade.

The table of statistics shows that the total timdatermined by the number of
texels (the surface area and the lightmap resolutiad the number of lights
(a combination of multi-sampled direct lights andual indirect lights).

Testl is darker than the other tests. If too fatual lights are used, the
indirect light in the scene is not approximateduaately enough and may look
noticeably different. The minimum number of indiréghts to produce a
consistent approximate result does vary from steseene. A rough figure is
500-1000 indirect lights, but as little as 200 rbayadequate for simple
scenes. Test3 used 1000 indirect lights and pedavell. Only théhard

cases of the lamp shades highlight inadequate nsnolbéndirect lights in
those areas.

Test4 uses the highest resolution, the largest pumidights, and more
photons than earlier tests. Notice that the oVbraghtness is relatively
similar to Test2 and Test3 that use one half totenth as many indirect
lights. Also note that the light distribution ire3t4 is the same as Test6 that
took much less time by generating a lower resatutiotput with the identical
light settings.

Observation of the time and quality statistics shidlwat varying the number of
light samples or the lightmap texture resolution peoduce similar lighting
results with dramatic differences in processingetinQuick previews can be
performed in minutes, useable results in minutdstas and high quality
results in many hours.

45

System Configuration:
Intel Pentium 4 2ghz
WindowsXP Pro

512mb PC2100 DDR RAM

(Up to 50mb RAM actually used by process, when ghohap, or output textures

exist in memory.)

Scene Statistics:

Number of Polys: 67131
Number of Lightmaps: 5237
Number of Mesh objects: 35
Number of Smooth groups: 3227
Number of Light sources: 5

Scene Dimensions: 11.4m x 10.0m X 2.5m

Process Options:
Anti aliasing - off

Solid space sample correction - off for Testl,218for Test 4,5,6

Reclaim texture space - on
Reduce texture pages - off
Max photon bounces — 16

Operation Testl Test 2 Test3 Test4 Test5 Test6
Num Photons 100,000 1,000,000 1,000,000 2,000,000 ,000Q,000 | 2,000,000
Lightmap resolution 0.05m 0.025m 0.025m 0.01m 0.1m 0.5m
Multisamples per direct light 20 50 50 200 200 200
Number Indirect lights 100 1,000 5,000 10,000 10,00 10,000
Total texels 685,682 1,892,375 1,892,375 7,317,169| 327,842 158,387
Total Tex sample points 569,454 1,392,430 1,392,430 | 5,987,230 299,660 157,030
Total Light sample points 200 1,250 5,250 11,000 ,000 11,000
Total process time 2m 8.5s 19m 26.7s 1h 18m 57 406h18s 40m 5s 24m 43s
Prepare Geometry 17s 17s 17s 17s 17s 17s
Create Smoothgroups 722ms 722ms 729ms 725ms 722mg 23ms7
Create Lightmaps 4.9s 4.9s 4.9s 5.15s 4.9s 4.9s
Build Photon Map 2.8s 20.66s 20.71s 41.7s 41.8s 2541.
Balance kd-tree 152ms 1.73s 1.72s 3.56s 3.58s 3.59s
Create indirect lights 104ms 1.16s 1.15s 2.13s .12 2.17s
Build Polygon BSPs 11.3s 11.3s 11.3s 11.3s 11.3s .3s11
Light World 1m 48.3s 18m 46.4s 1h18m 17s 10h 39m 1%s 39m 3s m 23s
(& Calc Sample Points)

Pack Lightmap textures 78ms 522ms 523ms 714ms 31lms | 13ms

The images have been ordered in a snaking patteéhrey may be compared to neighbors of similar

configuration.

1 ® 2
Order of images: 4 = 3
5 ® 6

46

Camera position 1

5

Camera position 2

a7

Camera position 3

5

Camera position 4

48

