
GameMonkey Script FAQ

What is GameMonkey Script?

GameMonkey is a scripting language that is intended for use in game and tool
applications. GameMonkey is however suitable for use in any project requiring
simple scripting support. GameMonkey Script is usually just referred to as
GameMonkey and abbreviated to GM (gee-em).

GameMonkey borrows concepts from Lua (www.lua.org), but uses syntax similar to
C, making it more accessible to game programmers. GameMonkey also natively
supports multithreading and the concept of states.

What does the code look like?

Here is some sample script code that calls functions bound from C:

OnDoorTriggerEnter = function(door, objEntering)
{
 if(objEntering == player && !door.IsOpen())
 {
 door.Open();
 return true;
 }
 return false;
};

Here is some C code that is bound by script:

#include "gmThread.h"
#include "gmMachine.h"
//
// float SquareRoot(int/float)
//
int GM_CDECL SquareRoot(gmThread * a_thread)
{
 float fValue;
 GM_CHECK_NUM_PARAMS(1);
 if(a_thread->ParamType(0) == GM_INT)
 {
 fValue = (float)a_thread->Param(0).m_value.m_int;
 }
 else if(a_thread->ParamType(0) == GM_FLOAT)
 {
 fValue = a_thread->Param(0).m_value.m_float;
 }
 else
 {
 return GM_EXCEPTION;
 }
 a_thread->PushFloat(sqrtf(fValue));
 return GM_OK;
}

// Before using, somewhere in code, register the binding(s):
extern gmMachine* machine; // Virtual Machine instance
machine->RegisterLibraryFunction(“SquareRoot”,SquareRoot);

Here is some C code calling a script function:

#include "gmMachine.h"
#include "gmCall.h" // Header contains helper class
extern gmMachine machine; // Virtual Machine instance
// Assumes a function int Add(int, int) exists in script
int AddTwoIntegers(int valueA, int valueB)
{
 int resultInt = 0;
 gmCall call;
 if(call.BeginGlobalFunction(&machine, "Add"))
 {
 call.AddParamInt(valueA);
 call.AddParamInt(valueB);
 call.End();
 call.GetReturnedInt(resultInt);
 }
 return resultInt;
}

What are the key features of GM?

• Small code base. Compiled code may use as little as 50kb* of RAM. (*Memory
usage is reduced by using shared libraries, shared application code, tweaking
compiler options, or removing the runtime compiler).

• Compile source code at run time, or link to precompiled libs.
• Lightweight, native threading.
• Soft real-time incremental garbage collection. Controllable memory footprint. No

painful reference counting.
• Easy to bind C\C++ functions and call script from C\C++.
• Runtime debugging and reflexion support.
• C style syntax.
• Competitive performance when compared to other scripting languages for both

CPU and Memory usage. Speed is a trade off for flexibility and simplicity.
• Easily modifiable as it is written in C++ and uses Flex and Bison.

Here are some things that gm does not try to be:

• A language for non-programmers. However, when provided with a simple set of
bindings, non programmers may be able to configure an application, or define
simple behavior.

• A safe language suitable for processes critical to human life. If you are
programming the safety controls for a nuclear reactor, an automatic drug administer
for medical patients, or a in-flight navigation system, consider other, more fail-safe
languages.

What platforms does GameMonkey run on?

Written entirely in C++, it should run on any platform with at most minor
modification or configuration. It has been successfully compiled and run on:
Windows PC, Apple Mac, Microsoft Xbox & Xbox 360, Sony Playstation2 &
Playstation3 & PSP, Nintendo GameCube & Wii, various flavors of Linux.

Where did GameMonkey come from?

During 2002, Matt and Greg investigated scripting languages because they seemed
like the 'right thing to do' as far as improving the efficiency of game and tool
development. We read postmortems, reviews, users opinions, case studies, GDC
notes and evaluated languages like Java, interpreted C, Python and a bunch of wacky
scripts used by various games, when source code or examples were present on the
Internet. One tiny embedded language stood out, and that was Lua. Matt used it to
bind some of his own tools and utilities and quite enjoyed the experience. We
considered just using Lua, but even at version 4 (the current release at the time), there
were many improvements we thought could be made. Such as native threading,
robust parser generated by flex & bison (lex & yacc), the concept of 'states' (which
turned out to be a simple binding), as well as things for C programmers like C syntax
and base 0 numbers. So in not much time at all, we had a new scripting language,
based on the concepts of Lua in a somewhat working form. About that time, a new
console project was starting at work and we decided to use the script for both the
game code and tools. This meant finishing it off during work time and it thus become
part of the company code base. Some months later, the project was canceled (as
happens regularly in the game industry), and Matt left to work elsewhere. We
requested that the code be released to the community so it could be enjoyed by others,
and that development could continue. On June 12th 2003, Auran granted that request
on the condition that the source code and related materials be released under a 'free
software' or 'open source' style license agreement of our choosing, and that we did not
sell or profit from the original code. We would like to thank Auran for releasing this
material and for the understanding and support shown by its directors. It can also be
noted that Auran has an excellent policy to encourage its employees to self-develop
and share knowledge as long as this does not conflict with its business, in relation to
trade secrets and intellectual property. You can visit Auran here:
http:// www.auran.com

http://www.scintilla.org/
http://www.auran.com/

Why is it called 'GameMonkey'?

We wanted a unique name that related to game programming, perhaps related to
nature, sounded cute, cool or whatever. After tossing a few names around, we
decided on 'GameMonkey'. There could be other subconscious, psychological
reasons, but that pretty much sums it up.

What do you get with the current release of GameMonkey?

• The GameMonkey language including some useful bindings.
• An example GameMonkey executable that runs scripts from the command line.
• A librarian that display the contents of precompiled libs.
• A example debugger that demonstrates basic stepping, watching and breaking.
• Sample scripts.

What is coming in the future?

• A new virtual machine that is a register stack machine and should be up to two
times faster than the current VM.

• An IDE with Debugger.
• More bindings for useful tools and applications.
• Possibly native support for enums or constants.

What can I do to help?

• Use GM in your projects.
• Create bindings for GM and share them.
• Tell others about GM.
• Make improvements to GM or its related materials such as debugger, documents,

samples, etc. and share them.
• There may be other things such as server space or download mirrors your could

provide, so contact us if you think you can help.

Third party code used:
• Scintilla is used by the debugger. http://www.scintilla.org.
• Flex and Bison were used by the compiler. http://www.gnu.org/software/flex and

http://www.gnu.org/software/bison/bison.

http://www.gnu.org/software/bison/bison
http://www.gnu.org/software/flex
http://www.scintilla.org/

Design decision notes:

No increment and decrement operators.
The ++ and -- operators familiar to C programmers were removed for the sake of
consistency with the language. GM does not allow assignment in an expression. For
example:

if ((a = b + c) > 0) {} // Fine for C/C++, not for GM
a = b + c; if(a > 0) {} // Fine for both

Please note that operators +=, *=, &= etc. are provided, allowing for shorter and
simpler statements.

The language is case sensitive.
Although case insensitivity may be desirable, if only to prevent errors where similarly
named variables clash, it is impossible to implement in an efficient manner. The
problem lies in the very powerful 'table'. Tables are the building blocks for logical
objects in the language as well as general purpose containers. A table member may be
a string like “Hello World” which requires case preservation, or it may be a variable
or function which would not require case preservation. Unfortunately converting or
checking for case would waste precious CPU time and is thus not implemented. Of
course nothing prevents this functionality from being added. The current source code
may even have a #define with the beginnings of such a modification.

Statements end in semicolons.
Since Bison only supports one token look ahead, it is very difficult to remove the need
for a terminating token such as the semicolon. If a non 'C' style syntax were to be
used, it may work without any semicolons. Here is an example of such code:

if (condition) then
 DoSomething()
else
 DoSomethingDifferent()
endif
function FunctionVar(param1, param2)
 SomeCode()
endFunction

Experienced C programmers may often forget to put a semicolon on the end of a
function, because unlike C, functions in GM are just another variable assignment, thus
a statement requiring a semicolon. This example may demonstrate the reason:

Add = function(a, b) { return a + b; };

Limited automatic type and conversion casting.
In the interest of speed and flexibility, types like int and float are not automatically
converted by bound functions. Please note that they are automatically upgraded as
necessary within script statements. If a bound function were to accept a number,
where that number may be an int or float, it must explicitly check for each type and
convert as necessary. Helper functions and macros are provided to simplify this
operation.

What is in the download package?

gmsrc\bin Compiled binaries
 \doc Documents
 \EditorHighlighters Editor syntax highlighters
 \scripts Sample script programs
 \src\binds Sample bindings
 \examples Sample application programs
 \gm GameMonkey Script source code
 \gmd Sample Debugger
 \gme Sample script executable
 \gml GameMonkey librarian
 \platform Platform configuration headers

The source code folders contain project and workspace files for MS Visual Studio 6.

Your first GameMonkey program
In the tradition of programming, we must present... HelloWorld.

1) You have already unzipped the package to you hard disk, so you can just skip step
1.

2) Create a text file called 'test.gm'
3) Type 'print(“HelloWorld”);'
4) Save it to c:\gmsrc\bin
5) Open a Command Prompt in c:\gmsrc\bin
6) Type 'gme test.gm'

Getting started

Don't have a favorite editor, or application to embed the language, but want to get
started?

Download a free text editor. Here are some good ones:
PSPad: http://www.pspad.com/
ConTEXT: http://fixedsys.com/context/
CrimsonEditor: http://www.crimsoneditor.com/

This example will use CrimsonEditor.

1) Copy the appropriate syntax highlighter files into your program directory in the
appropriate place. Syntax highlighting makes you think you have a cool development
environment.

2) Set your 'OpenWith' for '.gm' files. Right click on a .gm file in the \scripts folder
and choose 'OpenWith'. Now browse for your editor program and remember to check
the 'Always use the selected program to open this kind of file'.

3) Set up a tool to run the compiler and execute the program.
For Crimson Editor, you would do this:
Tool(menu)->Preferences(menu)
Tools->UserTools
Scroll the UserTools to find 'Ctrl+0' and fill in

http://www.crimsoneditor.com/
http://fixedsys.com/context/
http://www.pspad.com/

Menu Text: Build GM
Command: C:\gmsrc\bin\gme.exe
Argument: "$(FileDir)\$(FileName)" -d -k -e
InitialDir: $(FileDir)
HotKey: (leave as None, unless you want a hot key other than Ctrl+0)

4) Now you can use the Tool menu, or short cut key to compile and run the file you
are editing.
The gme.exe should output error messages in a standard format so that some editors
will let you jump to the error line.
The '-k' command line option will wait for you to press 'Enter' after the program has
finished, so the console window will remain and not quickly disappear.

Now for a debugging session.

1) Run 'gmd.exe' and a debugger application will appear.

2) Run your program with the -d command line parameter, and the debugger will
attach to your running program. The debugger controls should look familiar. You can
stop all threads, step through the code and resume. You can also watch some
variables. The current debugger is just an example application and is not fully
featured.

GME (GameMonkey Script Executer)

The gme.exe program is just an example application that uses GameMonkey script
and binds some functions to write various simple console programs. You could write
a text console game or a tool with it, as several sample scripts demonstrate. The real
power is using it in your own applications to extend, configure, or do most of what
general purpose languages can.

Since you will probably start out by using GME to experiment with the language, and
maybe even use it to run tool scripts, like a .BAT or .CMD file on steroids, here is a
description of the syntax:

gme.exe <script file> <gme commands> <script file commands>

<script file> - The script file to execute, most likely ending in '.gm'.

<gme commands> - A combination of:
-k Keypress on exit.
-d Allow debugger to attach.
-e Add Windows environment variables to global table called 'env'.
-ke Keypress on exit, only if there was a compile or run-time error.

<script file commands> - Any parameters you wish to pass to the script. The
parameters will be placed in a global table called 'arg'.

Your first embedded virtual machine:

Embedding GameMonkey in your own applications is as simple as compiling the gm
source files with your application code, creating a gmMachine and executing some
script with it. Please look at the GME source code for example that includes extra
bindings.

To embed GameMonkey, you usually follow these steps:
1) Add all the src\gm *.cpp and *.h files to your project except gmDebugger.

gmDebugger is only required to create a specific debugger application.
2) Add or create a platform config file such as src\platform\win32\gmConfig_p.h.
3) Add some ready made bindings and helpers from src\binds as you desire.
4) Compile these files with your project, or build and link them as a separate lib. You

may need to configure preprocessor options to locate files if they reside in different
folders, and you may need to configure precompiled headers if you are using them.

5) Create your own application specific binds. Use src\binds files and available
samples as a reference, and refer to the FAQ and ScriptReference for more
assistance. Remember to browse the example C++ and GM script files for
reference.

The following examples are win32 console applications.

Here is a minimal example:

#include "gmThread.h" // game monkey script

int main(int argc, char* argv[])
{
 gmMachine machine;
 machine.ExecuteString("print(`Hello world`);");
 getchar(); // Keypress before exit
 return 0;
}

Here is an interactive example.

#include <windows.h>
#include <mmsystem.h> // multimedia timer (may need winmm.lib)
#include "gmThread.h" // game monkey script

int main(int argc, char* argv[])
{
 // Create virtual machine
 gmMachine* machine = new gmMachine;

 // Get a script from stdin. Some examples:
 // print("Hello world");
 // for(i = 0; i < 10; i=i+1) { print("i=",i); sleep(1.0); }
 fprintf(stdout,"Please enter one line of script\n>");
 const int MAX_SCRIPT_SIZE = 4096;
 char script[MAX_SCRIPT_SIZE];
 fgets(script, MAX_SCRIPT_SIZE-1, stdin);

 // Compile the script, but don't run it for now
 int errors = machine->ExecuteString(script, NULL, false, NULL);
 // Dump compile time errors to output
 if(errors)
 {
 bool first = true;
 const char * message;

 while((message = machine->GetLog().GetEntry(first)))
 {
 fprintf(stderr, "%s"GM_NL, message);
 }
 }
 else
 {
 int deltaTime = 0;
 int lastTime = timeGetTime();

 // Keep executing script while threads persist
 while(machine->Execute(deltaTime))
 {
 int curTime = timeGetTime();
 deltaTime = curTime - lastTime;
 lastTime = curTime;
 }
 }

 delete machine; // Finished with VM

 fprintf(stdout,"Script complete. Press a key to exit.");
 getchar(); // Keypress before exit

 return 0;
}

What's with the strange comments in the source code?

The source code is commented with doxygen compatible comments
(http://www.doxygen.org/ or maybe http://sourceforge.net/projects/doxygen/). The
C++ style '\\\' comments are favored over the older C style '/*!' comments due to the
inability to nest classic C comments.

GameMonkey Website:

http://www.somedude.net/gamemonkey/

Forum:
http://www.somedude.net/index.php?name=PNphpBB2&file=index&c=3

http://www.somedude.net/index.php?name=PNphpBB2&file=index&c=3
http://www.somedude.net/gamemonkey/
http://sourceforge.net/projects/doxygen/
http://www.doxygen.org/

